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Should We Control? The Interplay Between Cognitive Control and

Irene Cogliati Dezza and Axel Cleeremans
Université Libre de Bruxelles

Information Integration in the Resolution of the
Exploration-Exploitation Dilemma

In their daily decisions, humans and animals are often confronted with the conflicting choice of opting
either for a rewarding familiar option (i.e., exploitation) or for a novel, uncertain option that may,
however, yield a better reward in the near future (i.e., exploration). Despite extensive research, the
cognitive mechanisms that subtend the manner in which humans solve this exploration-exploitation
dilemma are still poorly understood. In this study, we challenge the popular assumption that exploitation
is a global default strategy that must be suppressed by means of cognitive control mechanisms so as to
enable exploratory strategies. To do so, we asked participants to engage in a challenging working
memory task while performing repeated choices in a gambling task. Results showed that manipulating
cognitive control resources exclusively hindered participants’ ability to explore the environment in a
directed, intentional manner. Moreover, under certain scenarios, adopting exploitative strategies was also
dependent on the availability of cognitive control resources. Additional analyses using a recent compu-
tational model of information integration suggests that increasing cognitive load specifically interferes
with the ability to combine reward and information in order to inform choices. Our results shed light on
the cognitive mechanisms that underpin the resolution of the dilemma and provide a formal foundation

William Alexander
Ghent University and Florida Atlantic University

through which to explore pathologies of goal-directed behavior.

Keywords: exploration-exploitation dilemma, informative value, reinforcement learning, cognitive con-

trol, adaptive behaviors

Understanding the exploration-exploitation dilemma is widely
taken to be one of the main challenges in the domain of adaptive
control and behavior (Cohen, McClure, & Yu, 2007). The dilemma
refers to the fact that when facing a choice, one may either choose
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to stick with what we know (familiar rewarding outcomes) or
engage in the risky exploration of unknown regions of the decision
space. To better picture this phenomenon, imagine that it is a nice
day in your city. You are walking around downtown in search of
a pleasant place to eat. A good strategy would be to choose your
favorite restaurant, because the likelihood that you will find it
satisfying is very high. However, new dining rooms have recently
opened in town. Do you select the restaurant that you know you
will enjoy, or do you select another restaurant that you have never
tried before, potentially finding either a new favorite or profound
disappointment? Thus, the exploration-exploitation trade-off is a
dilemma precisely because it involves addressing a challenging
conflict between maximizing reward and maximizing information.
Solving it is necessary in order to flexibly adapt to environments
that are often both uncertain and dynamic. Because all cognitive
agents have to somehow address this challenge, the exploitation-
exploration dilemma is ubiquitous and has relevance for many
organisms and for many types of decisions.

Although extensive research on the exploration-exploitation di-
lemma has been conducted over the last decades in different
scientific domains (e.g., artificial intelligence, animal foraging,
and neuroscience), a complete understanding of the underlying
mechanisms involved in the resolution of the dilemma is still
lacking. In the most popular framework (Cohen et al., 2007; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006), the dilemma is
considered as a dual-process in which exploitation is a default


mailto:icogliat@ulb.ac.be
http://dx.doi.org/10.1037/xge0000546

n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

978 COGLIATI DEZZA, CLEEREMANS, AND ALEXANDER

strategy, and it appears to dominate choice behavior because of its
association with stronger reward histories. Following this frame-
work, modifying behavior in an adaptive manner through explo-
ration thus requires overriding the exploitative strategies that tend
to dominate the decision process by its stronger association with
rewards. To overcome this dominance, behavioral/cognitive con-
trol processes might play a central role (i.e., inhibition) in enabling
the switch to exploratory strategies (Cohen et al., 2007; Daw et al.,
2006). Cognitive control is the ability to coordinate sensory infor-
mation and actions so as to align them to internal states or inten-
tions (Koechlin, Ody, & Kouneiher, 2003), and is required when
the mapping between sensory inputs and actions is rapidly chang-
ing or weakly established relative to other existing stimulus—
response associations (Miller & Cohen, 2001). Top-down control
mechanisms could therefore be the core process that underpins
exploratory behavior by enabling the continuous monitoring of the
need for behavioral adjustments and by implementing new goal-
directed behaviors (Cohen et al., 2007; Daw et al., 2006). The
“behavioral control” framework was introduced to explain activity
in prefrontal regions (i.e., frontopolar cortex), known to be in-
volved in cognitive control (Mars, Sallet, Rushworth, & Yeung,
2011) during exploratory decisions (Daw et al., 2006). Subsequent
evidence has confirmed the core involvement of higher cognitive-
control functions in exploration (Badre, Doll, Long, & Frank,
2012; Cavanagh, Figueroa, Cohen, & Frank, 2012; Frank, Doll,
Oas-Terpstra, & Moreno, 2009).

To understand precisely how cognitive control is related to
choice behavior in the exploration-exploitation dilemma, it is
important to note that, under the framework outlined in the previ-
ous paragraph, exploitation specifically refers to choosing the
option that maximizes a (reward) prediction. Exploration, on the
other hand, is an umbrella term that encompasses different type of
strategies, essentially random and directed exploration (Wilson,
Geana, White, Ludvig, & Cohen, 2014). The concept of random
exploration derives from reinforcement learning (RL) theory (Sut-
ton & Barto, 1998), wherein exploration is merely the product of
noise in the response-generation process. Under this scenario, a
decision maker who learns to maximize a numerical reward signal
may nevertheless make choices associated with lower reward
values (exploration) because of a noisy response. In contrast, the
concept of directed exploration derives from optimal decision-
making theories, which take exploration to be an explicit, goal-
directed strategy (Gittins & Jones, 1974). In directed exploration,
an animal “directs” exploration toward uncertain options, thus
increasing its understanding of the surrounding environment
through gaining new information. Thus, the absence of informa-
tion is the main driving factor in this subtype of exploration
behavior.

Whether humans use information to direct their exploratory
behaviors has been a matter of intense discussion over the last
decade, and a number of findings have suggested that this is not the
case (Daw et al., 2006; Payzan-LeNestour & Bossaerts, 2011).
However, this view has been challenged recently in studies using
alternative paradigms that controlled for the availability of infor-
mation in the environment, suggesting that humans may adopt both
random and directed exploration (Wilson et al., 2014), the hidden
mechanisms of which relate to the integration of reward and
information into choice values (Cogliati Dezza, Yu, Cleeremans,
& Alexander, 2017). Although based on a common exploratory

drive, the two exploratory strategies showed different neural sub-
strates (Warren et al., 2017; Zajkowski, Kossut, & Wilson, 2017),
different age-related development (Somerville et al., 2017), and
they react differently to changes in reward contingencies (Cogliati
Dezza et al., 2017). Thus, the dilemma does not seem to be a
unitary binary process but instead a class of problems spanning
different scales (Cohen et al., 2007). Following this recent per-
spective, the dilemma is represented as a continuum (Mehlhorn et
al., 2015) on which many behaviors fall in the extremes (e.g.,
choosing the highest valuable option or the most uncertainty
option), whereas others might fall somewhere in between (choos-
ing a moderately valuable option associated with some uncer-
tainty). Behavior at these intermediate points on the continuum
is less amenable to interpretation, and controlled behavioral
paradigms are required (Wilson et al., 2014). Different cogni-
tive mechanisms may therefore underlie the resolution of the
dilemma, and the ability of a decision maker to deploy different
exploratory strategies may depend on the availability of suffi-
cient cognitive control resources (Otto, Knox, Markman, &
Love, 2014). However, a new framework that attempts to inte-
grate these new advances in understanding the exploration-
exploitation dilemma and its underlying cognitive mechanisms
is still lacking.

Motivated by the behavioral control hypothesis of exploratory
behavior and by recent understanding over the resolution of the
exploration-exploitation dilemma in humans, we consider whether
cognitive control processes might modulate the resolution of the
exploration-exploitation dilemma using a mixture of exploratory
strategies (i.e., random and directed exploration). We investigated
this hypothesis using a variant of bandit tasks that has previously
been used to disentangle both random and directed exploratory
strategies (Cogliati Dezza et al., 2017; Wilson et al., 2014). Bandit
tasks are a family of RL problems in which, for each trial, partic-
ipants must choose among a set of slot machines (or “bandits™)
with the goal of maximizing the total reward over a sequence of
trials (Robbins, 1952). This new version of the bandit task used a
two-phase gambling task in which, for each game, participants
were initially instructed as to which options to choose (forced-
choice task), after which they were free to choose between options
(free-choice task) so as to maximize their final gain. By adding a
forced-choice task on the top of the standard bandit task, the
information participants had about the payoffs of each option was
controlled, thereby enabling the identification of the two explor-
atory strategies in the first free-choice trial of each game (Wilson
et al., 2014). In the current study, we additionally manipulated
cognitive control resources by asking participants to engage in a
challenging working memory task (Konstantinou & Lavie, 2013)
while performing the sequential decision-making task. Under the
behavioral control hypothesis, depletion of cognitive control re-
sources should lead to a more pronounced expression of processes
that operate independently of control, such as exploitation,
whereas behaviors that require control—such as exploration—
should be attenuated. In order to investigate the effect of cognitive
load manipulation on the learning and decision-making compo-
nents of the dilemma, we developed a computational model that is
capable of capturing participants’ behavior on the new version of
the bandit task by associating a value with information on top of
the standard reward-based RL formulation (Cogliati Dezza et al.,
2017). Applying a computational model in this context will help in
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understanding the underlined mechanisms affected by cognitive
control manipulation, which might be not accessible with a “pure”
behavioral analysis.

Method

Participants

Twenty-five young adults participated in this study (20 women;
aged 18-24 years, mean age = 19.6). Based on a previous study
(Cogliati Dezza et al., 2017), a power analysis suggested a sample
size of 24 and power of 0.999. Participants were students at the
Faculty of Psychology (Université libre de Bruxelles) and received
credits for their participation to the study. The entire group be-
longed to the Belgian French-speaking community. The experi-
ment was approved by Faculty of Psychology Ethics Committee.

a N°Game: |
Forced Choice Task Free Choice Task
I'l 12 I3 I'4 153 [6 T2 | I3[ T4 | “E5 |16
C Forced Choice d

# Trial

Feedback
(300 ms)

# Game: |
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Informed consent was obtained from all participants prior to the
experiment.

Procedure

Bandit task. To investigate the effect of cognitive control on
the exploration-exploitation dilemma, we asked participants to
perform 128 independent games of a new version of the multi-
armed bandit task (see Figure 1) that has already been shown to
elicit both random and directed exploratory strategies (Cogliati
Dezza et al., 2017; Wilson et al., 2014). As in standard bandit
tasks, in this version, participants chose among options with the
goal of maximizing the total reward over a sequence of trials.
When selected, each option provides a reward (generated from a
hidden distribution) that informs participants about the desirability
of each alternative. Contrary to standard bandit tasks, for each
game participants performed a forced-choice task followed by a

Free Choice

Current Points: 0

Feedback
(300 ms)

Forced Choice Task

SRSl T T2 T3 T4 TS5 T6

Sequence

Figure 1.

# Trial: | Current Points: 20
# Game: |

Free Choice Task

RN T2 D T3 BN T4 R 75 DM T6 BN
R 2 BN T3 B T4 RS 75 BN T BN

Behavioral paradigm. (a) Organization of games and trials. For each game, participants faced six

consecutive trials of the forced-choice task and between one and six trials of the free-choice task. In the first
free-choice trial (in yellow or T1), reward and information are orthogonalized, enabling the distinction between
random and directed exploration. The number of free-choice trials was exponentially distributed such that a higher
proportion of games allowed subjects to make six free choices. (b) Choices: Participants indicated their choices using

the forefinger, middle finger, and ring finger and pressing the keyboard keys “C,” “V” and “B,”

respectively. (c)

Forced-choice task: Three decks of cards were displayed on the screen (a blue, a red, and a green deck) and
participants were forced to choose a preselected deck (outlined in blue in the figure). After selecting the deck, the card
turned and revealed the points associated with the selected option, between 1 and 100 points. At this stage, the points
displayed to participants were not added to their total score. (d) Free-choice task: Participants made their own
decisions among the same three decks of cards displayed during the forced-choice task. After each trial, the points
displayed on the screen were added to the participants’ total score and participants were instructed to attempt to
maximize the total points earned at the end of the experiment. (¢) Cognitive load manipulation: Before the first trial
of the free-choice task, a sequence of nine digits was displayed on the screen. During the Low Load condition, the
digits were presented in fixed numerical order (i.e., “123456789”) for 500 ms. On the contrary, during the High Load
condition, the digits were presented in random order (i.e., “371586249”) for 2,000 ms, and a new sequence was
generated for each game. After each free-choice trial, a digit (randomly selected from the nine-digit sequence) was
displayed to participants who needed to report (“R,,”: memory response) the number that followed the presented
number in the previous nine-digit sequence presented before the first free-choice trial. T = trials. See the online article

for the color version of this figure.
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free-choice task (Wilson et al., 2014; Figure la). During the
forced-choice task, participants were only allowed to select options
that had been preselected by the computer (Figure 1c), whereas
during the free-choice task, participants were able to make their
own choices in view of maximizing their final score (i.e., the
amount of points earned throughout the game; Figure 1d). Con-
trary to the first version of this paradigm (Wilson et al., 2014),
information regarding the points earned following a choice did not
remain visible following a feedback in order to allow learning to
influence participants’ choices (Cogliati Dezza et al., 2017; Za-
jkowski et al., 2017). Each game was composed of six consecutive
forced-choice trials and from one to six free-choice trials (Figure
la). The number of free-choice trials was manipulated so that
participants were unable to predict the length of the free-choice
task (Cogliati Dezza et al., 2017) and to adjust their choices
accordingly (Wilson et al., 2014).

In this version, options were represented as decks of cards and
were placed on the left (blue deck), right (green deck), and central
(red deck) side of the computer screen (Figure 1b). The use of
three options allowed us to discern between the strategic use of
random and directed exploration (Cogliati Dezza et al., 2017)
without manipulating the prior knowledge participants had about
horizon (i.e., the total number of trials participants will experience
in a game), as in previous versions (Krueger, 2017; Wilson et al.,
2014). In particular, if choice probabilities for the two nonexploit-
ative options are equal, then exploratory behavior is entirely driven
by random exploration. On the contrary, if the choice probability
is different from chance, then choices are partially driven by
directed exploration. Participants indicated their choices using the
buttons “C,” “V,” and “B” of the computer keyboard (Figure 1b).
After each choice, the card was turned to reveal the points earned
by the participant for selecting that deck. Participants could obtain
between 1 and 100 points for each trial, and the number of points
earned for selecting a deck was sampled from a truncated Gaussian
distribution with a standard deviation of 8 points (the standard
deviation was equal for the three decks). The generative mean of
each deck was set to 30 and 50 points and adjusted by =0, 4, 12,
and 20 points to avoid the possibility that participants might be
able to distinguish the generative mean for a deck after a single
observation (i.e., the generative means ranged from 10 to 70
points). As in our previous study (Cogliati Dezza et al., 2017), the
three decks of cards had the same generative means in 50% of the
games (equal reward condition) and different means in the rest of
the games (unequal reward condition); the intent of the different
reward conditions in our previous study was to examine the
influence of reward context on exploration and exploitation. Al-
though not the primary focus of this study, reward context effects
reported in our previous study were also observed here (p < 10~ %)
replicating our previous work. However, in the present study, the
effect of reward context was not modulated by the cognitive
control manipulation. For this reason, the results concerning re-
ward context will be not discussed further. The means of the
generative Gaussian function were stable within a game and varied
between games. Participants were informed that the decks of cards
did not change during the same game but were replaced by new
decks at the beginning of each game. However, they were not
informed of the reward manipulation and the underlying genera-
tive distribution we adopted.

COGLIATI DEZZA, CLEEREMANS, AND ALEXANDER

As in previous versions of this paradigm, during the forced-
choice task, we manipulated the information about the decks of
cards acquired by participants (i.e., the number of times each deck
of cards was played). For each game, participants were forced to
either choose each deck 2 times (equal information condition) or to
choose one deck 4 times, another 2 times, and never for the
remaining deck (unequal information condition). The information
manipulation guarantees the orthogonalization of reward and in-
formation, thus allowing the distinction of random and directed
exploration in the first free-choice trial of each game (Wilson et
al., 2014). In 50% of the games, participants played with the equal
information condition. The order of card selection was randomized
in both information conditions as well as the appearance of equal
and unequal information condition.

Cognitive control manipulation. Cognitive control resources
were manipulated by asking participants to carry out a concurrent
working memory task during the free-choice task. Specifically, we
adopted Konstantinou and Lavie’s (2013) procedure, which has
been shown to selectively interfere with cognitive control pro-
cesses (Baddeley, Emslie, Kolodny, & Duncan, 1998; D’Esposito,
Postle, Ballard, & Lease, 1999). Prior to the beginning of the
free-choice task, a sequence of nine digits appeared on the screen
(Figure le). Participants were asked to memorize and retain the
sequence until the end of the game. After each free-choice trial, a
single memory probe digit was presented at fixation until a re-
sponse was given. The probe was equally likely to be any of the
first eight digits of the memory set. The participants’ task was to
report the digit following the probe in the memory sample (e.g., if
the memory set was “123456789” and the probe was “3,” the
correct response would be “4”). The probe was displayed on the
screen and participants pressed the key corresponding to the se-
lected digit.

In order to investigate the role of cognitive control resources on
the exploration-exploitation dilemma, participants were exposed to
two different conditions: High Load versus Low Load. In the High
Load condition, the digits were presented in random order (e.g.,
“371586249”) for 2,000 ms, and a new sequence was generated for
each game. In the Low Load condition, the digits were presented
in fixed numerical order (i.e., “123456789”) for 500 ms. Partici-
pants performed the two conditions on two different days, with
order randomized and counterbalanced (half of participants per-
formed the High Load condition on the first day and the Low Load
condition the second day, and vice versa). Performance on the
memory task was adopted as an inclusion criterion for the statis-
tical analysis (see Results section). Because of technical problems,
two participants failed to complete the entire 128 games in either
the High Load or the Low Load condition, but their data were
included anyway because only a few games were lacking (one
participant played 124 games of High Load condition and the other
123 of the Low Load condition), and removing those participants
did not affect the main results.

Computational Models

To investigate the hidden mechanisms involved in the resolution
of the exploration and exploitation dilemma under cognitive load,
we adopted a previously implemented version of a RL model that
learns reward values for each trial and incorporates a mechanism
reflecting the knowledge gained about each deck during previous
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experience—the gamma-knowledge reinforcement learning model
(gkRL). The gkRL model is able to reproduce participants’ behav-
ior on the behavioral paradigm described in the previous paragraph
(Cogliati Dezza et al., 2017). Specifically, compared with a stan-
dard RL model, this model is able to reproduce participants’
directed exploratory strategies in scenarios in which options are
not sampled at the same rate.

In each trial, a simple & learning rule (Rescorla & Wagner,
1972) is used to compute the expected reward value Q(c) for each
deck of cards ¢ (left, central, or right), using the following equa-
tion:

Q11,0 = Qj0) +a X3, M

where O, /(c) is the expected reward value for trial 7 and game j;
d,; = R,;(c) — Q,(c) is the prediction error, which quantifies the
discrepancy between the predicted outcome and the actual out-
come obtained at trial ¢ and game j. The expected reward Q, /(c) is
updated using the (1) only if an outcome from the deck c is
observed; otherwise, 0, j(c) = Q, ;(c). Considering that partic-
ipants were told that each game was independent from the others,
Q, is initialized at the beginning of each game (Khamassi, Enel,
Dominey, & Procyk, 2013) and set to the global estimate of Q
(~40 points; Cogliati Dezza et al., 2017).

Additionally, gkRL tracks information gained from each deck
based on how often it is selected, as follows:

t Y
I () = (2 i,,,-(c))

1

where

. _ [0, choice # ¢
ir€) = {1, choice = ¢ &

and where I, (c) is the amount of information associated with the
deck c at trial t and game j, and I, (c) is computed by including an
exponential term <y that defines the degree of nonlinearity in the
amount of observations obtained from options after each observa-
tion. Gamma (7) is constrained to be more than zero. Each time
deck c is selected, i, (c) takes value of 1, and O otherwise. On each
trial, the new value of i, (c) is summed to the previous i,,lvljj(c)
values, and the resulting value is raised to vy, resulting in 7, ;(c) . For
example, after six trials of the forced-choice task, if one option has
never been selected, I, (c) has value zero, whereas in the case that
one option is selected 4 times, /,(c) has the value 49. The
parameter y adds nonlinearity to the information term (Cogliati
Dezza et al., 2017), the intuition being that additional samples do
not contribute equally to the amount of information a subject has
about an option (e.g., sampling an option you have never observed
is far more informative than sampling an option you have observed
100 times previously).

Before selecting the appropriate option, gkRL subtracts the
information gained, /, (c), from the expected reward value, Q, /(c):

Vij©) =0, c) 1, (c) X 3)

where V, (c) is the final value associated with deck c. Here,
information accumulated during the past trials scales values V, (c),
so that increasing the number of observations of one option de-
creases its final value. In other words, when one option is over-
selected, I, (c) becomes larger resulting in lower V, (c) On the

contrary, if one option is never selected, /,(c) is zero and
V. /() = Q11 (c). In Equation 3, o is the information weight and
determines the degree by which the model integrates information
into choice values. In order to generate choice probabilities based
on expected reward values, the model uses a softmax choice
function (Daw et al., 2006; Humphries, Khamassi, & Gurney,
2012; Wilson & Niv, 2012). The softmax rule is expressed as

exp[B X V,(0)]
E,- exp[expB X V, (c))]

P(c/V,j(c)) = “

where (3 is the inverse temperature that determines the degree
to which choices are directed toward the highest rewarded option.
With higher 8, the model mainly selects options associated with
higher choice value, whereas with lower (3, the model’s choices are
more random.

The gkRL model can be informative concerning the effect of
cognitive load on the dilemma in two ways. First, it can help to
distinguish whether cognitive load effects on exploration are
driven by information computation (w and ) or whether they are
instead driven by changes in choice variability (). Second, if
changes are driven by alterations in information computation, the
model can help to distinguish whether these are driven by changes
in information integration (w) or by changes in the way informa-
tion availability decays with time ().

Model Fitting and Model Comparison

To estimate the model’s parameters a, 3, and w, vy, we collected
trial-by-trial participants’ choices in both the High and Low Load
conditions (Table 1, Table 2). During the fitting procedure, the ob-
jective function—the negative log likelihood, 2/=1**log(P/(c)), for
each participant under both load conditions was computed and
then minimized using MATLAB and Statistics Toolbox (Release
2015b) function fminsearchbnd (which is exactly as fminsearch but
does not search outside the fixed boundaries). The boundaries ad-
opted were as follows: a ]0,1[, B ]0, 10], o [—300, 300], v ]0, 12].
To increase the likelihood of finding a global rather than a local
optimum, fminsearchbnd was iterated with 15 randomly chosen
starting points. The fitting procedure was validated by running a
recovery analysis: The gkRL model was simulated on the task
using the retrieved parameter estimates to generate synthetic be-
havioral data, and then the fitting procedure was applied to the
synthetic data in order to check whether previously estimated
parameters were indeed recovered (1> > 0.4). Likewise, we
checked the model comparison outcome by computing a confusion
matrix and checking whether data generated from a model was
indeed best explained by that model.

Statistical Analysis

Statistical analysis was performed using RStudio (https://www
rstudio.com/); the functions and packages adopted are reported in
the Results section. To determine whether and how manipulating
cognitive control affected participants’ decision strategies, we
conducted repeated-measures ANOVA analyses. When violations
of parametric tests were indicated, nonparametric tests were per-
formed; p values of less than 0.05 were considered significant.
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Table 1
Model Fit Results: First Free-Choice Trials

COGLIATI DEZZA, CLEEREMANS, AND ALEXANDER

Participant Low Load High Load
subject

number a B » v Log (v) o B » v Log (vy)

1 .870 142 21.754 .002 -6.458 562 .145 12.740 520 —-.653

2 464 283 —10.186 .000 —19.612 .566 .094 1.017 202 —1.601

3 371 337 1.979 .289 —1.240 547 .080 2.667 1.313 272

4 587 .186 .000 10.386 2.340 482 297 —2.314 359 —1.024

5 .000 6.392 —.067 .595 —.518 .000 7.500 .000 919 —.084

6 124 132 9.246 .000 —19.089 .599 132 —8.941 110 —2.209

7 254 173 6.058 .000 —25.509 .109 201 .000 7.882 2.065

8 463 131 18.008 321 —1.137 011 1.367 230 .000 —21.745

9 258 .042 —3.445 .000 —19.636 455 .000 148.72 2.125 754

10 .190 400 011 4.429 1.488 .004 4.693 —.048 811 —.209

11 455 120 12.844 .000 —25.225 1.000 .040 —13.591 558 —.583

12 270 283 6.120 310 -1.170 343 072 2.610 .000 —21.931

13 385 077 2.828 .664 —.410 .661 .084 9.516 251 —1.383

14 502 .076 28.386 .000 —21.935 345 351 1.306 1.354 303

15 510 .248 9.855 326 —1.119 422 .165 10.952 291 —1.233

16 .698 .096 —4.486 .000 —21.560 563 102 —26.370 .145 —1.931

17 413 134 —16.646 .000 —20.527 432 150 —21.224 .000 —22.509

18 564 114 14.187 .000 —24.509 .004 2.181 —.337 .803 -.219

19 463 219 —1.686 .506 —.681 556 142 —1.872 742 —.298

20 536 462 14.166 .298 —1.211 733 187 .000 7.368 1.997

21 .143 .530 2.390 1.090 .086 534 .140 5.736 .000 —20.851

22 .004 3.518 .000 11.000 2.398 1 .004 —201 .000 —25.761

23 054 771 1.145 .706 —.348 .569 .140 .000 9.404 2.241

24 1.000 .065 .000 10.000 2.303 .002 3.278 —.057 976 —.024

25 468 215 8.107 519 —.657 .897 .081 10.165 .000 —20.222
Total 426 (.249)  .606 (1.38) 4.82(9.89) 1.66(1.40) —8.16(10.79) .456(3) .865(1.8) —2.81(51.76) 1.44(2.62) —5.47(9.68)
Note. Estimated parameters for each subject using the gamma-knowledge reinforcement learning model during High Load and Low Load conditions.

Group averages of the estimated parameters are also reported. Group standard deviations are reported in parentheses.

Results

In this section, we first report the results concerning the cogni-
tive load manipulation we adopted and its effects on participants’
performance. Subsequently, we examine the interaction between
cognitive load manipulation and decision strategies. Lastly, we
investigate the possible hidden mechanisms affected by manipu-
lating cognitive/behavioral control mechanisms.

Working Memory Task

First, we explored the effect of the cognitive load manipulation
on memory accuracy. To do so, trial-by-trial correct memory
responses were collected. A Wilcoxon signed-ranks test on the
average value of subjects’ overall correct memory responses re-
vealed a significant difference between High Load (M = 0.494,
SD = 0.12) and Low Load (M = 0.986, SD = 0.012; p < 1078,
r = .874), indicating that, as expected, increasing memory load
affected participants’ performance on the working memory task
(Figure 2a). Because it can be assumed that participants who
scored at chance level on memory performance were not reliably
engaged in the memory task, accuracy on the memory task was
used as an inclusion criterion for further statistical analysis. A
one-sample ¢ test on correct memory responses revealed a signif-
icant difference between the High Load condition and chance level
(12.5%), 1(24) = 1529, p < 107!, d = 4.33, suggesting that
participants, on average, were actively engaged in the working
memory task. Additionally, we investigated whether each partici-

pant performed at an above-chance level by applying a one-sample
sign test on participants’ correct memory responses in the High
Load condition. Results revealed that each participant scored
above chance level (p < 107°). Following this result, every
participant was included in the subsequent analysis.

Cognitive Load Manipulation

To check whether the cognitive load manipulation affected
cognitive control processes by increasing dual-task interference,
we measured choice reaction times (RTs) during the free-choice
task of both High and Low Load conditions (Figure 2b). A paired
t test on RTs revealed slower RTs during the High Load condition
(M = 1005 ms, SD = 468 ms) compared with the Low Load
condition (M = 483 ms, SD = 145 ms), #(24) = 6.19, p < 10~¢,
d = 1.24, suggesting that less cognitive control resources were
available to participants during the High Load manipulation.

Performance

We also examined whether the cognitive load manipulation
affected the way participants performed the gambling task. Here,
performance refers to the ability to play strategically during the
task in order to maximize the total gain. To do so, we computed the
probability of choosing the deck with the highest average of points
obtained in the previous trials (overall performance) during the
entire free-choice task under all reward conditions in both High
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Table 2
Model Fit Results: All Free-Choice Trials
Participant Low Load High Load
subject
number a B » v Log (v) a B ® v Log (v)
1 .640 119 19.633 .070 -2.659 570 114 15.735 072 -2.631
2 562 112 —.465 1.403 338 339 121 —-.018 3.718 1.313
3 AT5 .168 4.188 .000 —21.921 .590 .070 5.611 .000 —21.464
4 446 254 958 2.943 1.079 412 238 —-.550 1.952 669
5 .000 2.543 —.040 .000 —19.081 .306 .010 —37.732 674 —.395
6 .698 124 4.107 .000 —21.476 .580 .072 —4.313 1.064 062
7 397 .103 9.887 .000 —22.202 336 .049 —.075 3.504 1.254
8 627 110 26.525 .000 —27.211 .006 1.500 041 12.000 2.485
9 .002 2.958 —.005 11.847 2472 .096 .009 6.579 1.546 435
10 526 .180 —.001 4.443 1.491 210 .090 —2.064 .636 —.452
11 .388 123 —.033 3.179 1.157 132 131 —5.146 .682 —.383
12 443 225 9.320 .000 —22.414 451 .067 -.072 3.044 1.113
13 513 .067 —.005 4412 1.484 258 125 4.366 .000 —21.627
14 597 .091 17.966 .007 —4.918 296 234 —.031 2916 1.070
15 467 171 .000 9.762 2.279 279 192 .000 8.301 2.116
16 478 .106 —.237 2.153 767 433 .096 —10.481 704 —-.350
17 440 .094 —15.048 330 —1.109 455 .068 —15.817 541 —.615
18 675 .085 —.048 3.136 1.143 .005 2.961 —.224 .695 —.364
19 .609 130 —.319 1.955 671 429 144 —4.790 .601 —.509
20 430 268 15.801 .000 —21.862 422 181 .000 9.228 2222
21 .545 .186 15.156 .000 —20.273 291 .168 —.010 4.014 1.390
22 387 024 —.147 3.334 1.204 .000 771 —.579 .360 —1.022
23 .523 107 10.980 259 —1.352 523 134 .000 9.999 2.303
24 1.000 .049 5.261 6.845 1.924 .002 2.814 —.189 057 —2.870
25 .398 .188 12.575 .085 —2.467 381 133 —.018 2.961 1.085
Total ~ .495(.198) .344 (.737) 5.19 (9.0) 2.247 (3.201) —6.917 (10.802) .312 (.186) .424 (.81) —1.785(9.425) 2.771 (3.448) —1.407 (6.215)
Note. Estimated parameters for each subject using the gamma-knowledge reinforcement learning model during High Load and Low Load conditions.

Group averages of the estimated parameters are also reported. Group standard deviations are reported in parentheses.

and Low Load conditions. A Wilcoxon signed-ranks test on the
average values of overall performance revealed a decrease in the
High Load condition (M = 0.586, SD = 0.109) compared with
the Low Load condition (M = 0.617, SD = 0.098; z = 2.08 p =
.036, r = .417), suggesting that loading cognitive control resources
made it more difficult for participants to retrieve previously
learned information and act strategically. However, in both con-

ditions, all participants scored above a chance level set at 33%. A
Wilcoxon signed-ranks test on the average value of participants’
overall performance revealed a significant difference between
choosing the deck associated with the highest average points
during the High Load condition and chance level (p < 10~7), and
between choosing the deck associated with the highest averaged
points during the Low Load condition and chance level (p <
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Figure 2.  Memory performance and cognitive load manipulation. (a) Memory accuracy measured by averaging
trial-by-trial correct memory responses obtained by participants during both High and Low Load conditions. (b)
Cognitive load manipulation increased participants’ choice reaction time (reaction time [RT] in ms) during the
High Load compared with the Low Load condition. Error bars represent the standard error of the mean. *** p <
0.001. See the online article for the color version of this figure.
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10~7), indicating that participants played strategically during both
load conditions.

Cognitive Control and Decision Strategies

To investigate whether cognitive control plays a role in the
resolution of the exploration-exploitation dilemma, we first mea-
sured decision strategies when participants selected options un-
equally during the forced-choice task (unequal information condi-
tion) in both the High and Low Load conditions (Figure 3a). We
conducted the analysis on the first free-choice trial, being the only
trial in which a clear distinction between random and directed
exploration can be obtained (Wilson et al., 2014). Trials were
classified as directed exploratory when participants chose the
option that had never been sampled during forced-choice trials, as
exploitative when participants chose the experienced deck with the
highest average of points (regardless of the number of times that
deck had been selected during the forced-choice task), and as
random exploratory when the classification did not meet the
previous criteria. The sum of the three strategies defined the total
choice probability equal to 1 (choice probability = probability to
exploit + probability to random explore + probability to directed
explore = 1). We conducted a 2 (condition: High Load, Low
Load) X 3 (strategies: exploitation, random exploration, directed
exploration) nonparametric ANOVA. The test allows the use of
two-way repeated measure ANOVA in a nonparametric setting
using aligned rank transformation (e.g., ART package in R; Con-
over & Iman, 1981). Results showed an effect of strategy, F(2,
120) = 44.83, p < 107 "%, m2 = 0.428, and a Condition X Strategy
interaction, F(2, 120) = 5.87, p = .004, n; = 0.089 (Figure 3a).
The effect of condition did not reach the significant threshold (p =
.974). Post hoc comparisons showed an increase in random explo-
ration in the High Load condition (M = 0.202, SD = 0.123)
compared with the Low Load condition (M = 0.13, SD = 0.09;
p = .0060), a decrease in directed exploration in the High Load
condition (M = 0.338, SD = 0.177) compared with the Low Load

COGLIATI DEZZA, CLEEREMANS, AND ALEXANDER

condition (M = 0.473, SD = 0.198; p = .0012), and an increase
in exploitation in the High Load condition (M = 0.459, SD =
0.149) compared with the Low Load condition (M = 0.397, SD =
0.151; p = .031).

The analysis reported in the previous paragraph appears to
suggest that the effect of cognitive load manipulation affected
directed and random exploration in an opposite fashion: Directed
exploration decreased, whereas random exploration increased, un-
der the High Load compared with the Low Load condition. How-
ever, in the unequal information condition, trials labeled as random
exploration correspond to the deck of cards that is sampled either
2 or 4 times during the forced-choice task. Therefore, in this
condition, trials labeled as random exploration might be con-
founded with information-based processing (i.e., when subjects
select the option observed twice during the forced-choice task). In
order to gain insight into this issue we conducted two additional
analyses: (a) In the unequal information condition, we repeated the
2 X 3 ANOVA reported in the previous paragraph but only for
trials in which random exploratory trials in which those associated
with the deck of cards sampled 4 times during the forced-choice
task; and (b) we investigated participants’ behavior in the equal
information condition, in which random exploration was not con-
founded with the number of observations of each option (being the
outcomes of the three options equally experienced; Wilson et al.,
2014). In the first analysis, we labeled trials as exploitative when
the option was associated with highest reward and selected twice
during the forced-choice task, random exploratory when the option
was associated with lowest reward and selected 4 times during the
forced-choice task, and directed exploratory as previously de-
scribed. Next, we conducted a 2 (condition: High Load, Low
Load) X 3 (strategies: exploitation [2seen]), random exploration
[4seen], directed exploration) nonparametric ANOVA. Results
showed an effect of strategy, F(2, 120) = 79.8, p < 107", 2 =
0.57, and a Condition X Strategy interaction F(2, 120) = 7.48,p <
1073, ng = 0.111, whereas the effect of condition was not signif-

a Unequal Info Condition b Equal Info Condition
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0.001 0.00
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Figure 3. Cognitive load and decision strategies. (a) In the unequal information condition, directed exploration
decreased in the High Load condition compared with the Low Load condition, whereas random exploration and
exploitation showed the opposite trend. (b) In the equal information condition, random exploration increased
under the High Load condition, whereas exploitation decreased. Error bars represent the standard error of the
mean. Info = information. * p < 0.05. ™ p < 0.01. ™ p < 0.001.
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icant (p = .137). Post hoc comparison revealed an increase in
random exploration in the High Load (M = 0.119, SD = 0.073)
compared with the Low Load (M = 0.08, SD = 0.053) condition
(p = .025), whereas exploitation did not differ. Results concerning
directed exploration are already reported in the previous para-
graph. In the second analysis, we investigated the effect of cogni-
tive load manipulation on decision strategies when participants
were forced to equally select options (equal information condition;
Figure 3b). We classified choices as exploitative when participants
chose the experienced deck with the highest average of points, and
random explorative otherwise. A 2 (condition: High Load, Low
Load) X 2 (strategy: exploitation, random exploration) nonpara-
metric ANOVA on participants’ choices showed an effect of
strategy, F(1, 45) = 64.06, p < 10 ~'°, > = 0.587, and a
Condition X Strategy interaction, F(1, 45) = 5.9, p = .019, m} =
0.116. Post hoc comparisons revealed an increase in random
exploration in the High Load condition (M = 0.366, SD = 0.155)
compared with the Low Load condition (M = 0.273, SD = 0.129;
p = .0009), and a decrease in exploitation in the High Load
condition (M = 0.633, SD = 0.155) compared with the Low Load
condition (M = 0.725, SD = 0.129; p = .001). Taken together,
these analyses confirm that cognitive control manipulation af-
fected the two exploratory strategies in a different fashion.

Subsequently, we investigated whether the results reported in
the previous paragraph could have been driven by an ineffective
High Load manipulation in trials in which participants incorrectly
performed the working memory task. To do so, we compared RTs
from correct and incorrect memory trials during the High Load
condition. If the behavioral pattern observed in the previous anal-
ysis was driven by an ineffective load manipulation during incor-
rect memory trials, participants should have shown differences in
their RTs as a function of memory accuracy. We computed par-
ticipants’ RTs during correct and incorrect memory trials and
compared the average values. A Wilcoxon signed-ranks test on
choice RTs showed no differences between correct (M = 1,023
ms, SD = 562 ms) and incorrect (M = 993 ms, SD = 423 ms)
memory trials in all free-choice trials (z = 0.04, p = 979, r =
.008) and a marginal difference in the first free-choice trials
(correct: M = 2,036.8 ms, SD = 1,831.6 ms; incorrect: M =
2,116.3 ms, SD = 1,4252 ms; z = —1.95, p = .051, r = —.39).
However, this marginal difference was in the direction of higher
RTs for incorrect trials, as participants were taking more time to
retrieve incorrectly memorized sequence. Overall, these results
suggest that even if participants were not correctly performing the
memory task, they were still in a “loaded state” during the High
Load condition, suggesting that the observed effects on the deci-
sion strategies were a direct consequence of lowering cognitive
control resources.

Randomness Versus Information Integration Under
Cognitive Load

Our previous analysis showed that manipulating cognitive con-
trol resources affected how participants balanced the exploration-
exploitation dilemma, exploring more randomly overall during
high-working-memory-load conditions. In this section, we asked
whether this effect was related to an increase in the randomness in
participants’ choices or to alterations in reward and information
processing that subtend the resolution of the dilemma through

directed exploration (Cogliati Dezza et al., 2017). To better inves-
tigate the mechanisms affected by the load manipulation, we fit the
gkRL model to all participants’ first free choices during both
the High and Low Load conditions to obtain the estimates of the
values of the following parameters: learning rate «, inverse of the
temperature 3, the nonlinear parameter vy, and the information
parameter o (see Table 1). We then compared the estimated
parameters for the High Load condition with the parameters of the
Low Load condition to investigate the effect of the cognitive
control manipulation. As expected, because the learning processes
during the forced-choice task were not affected, a Wilcoxon
signed-ranks test on the learning rate o showed no difference
between the Low Load (M = 0.426, SD = 0.249) and High Load
(M = 0.456, SD = 0.3) conditions (z = —0.4171, p = .691, r =
—.083). Furthermore, a Wilcoxon signed-ranks test on the inverse
temperature parameter 3 showed no difference between the Low
Load (M = 0.606, SD = 1.383) and High Load (M = 0.865, SD =
1.8) conditions (z = 0.094, p = .937, r = .019). Additionally, a
Wilcoxon signed-ranks test on the parameter y showed no differ-
ence between the Low Load (M = 1.66, SD = 3.44) and High
Load (M = 1.44, SD = 2.62) conditions (z = —0.444, p = .672,
r = —089). On the contrary, the information parameter w showed
a decrease in the High Load condition (M = —2.81, SD = 51.76)
compared with the Low Load condition (M = 4.82, SD = 9.89;
7= —2.058, p = .039, r = —.412), suggesting that the increase in
random exploration was related to an inability to integrate the
learned information into a choice value rather than an increase in
the randomness of participants’ choices or by alteration in how
information is decay with time (Figure 4a).

Furthermore, we fitted the model to all free-choice trials so as
to have a more comprehensive view over the underlying process
as well as to obtain a better estimate of the parameter values
because of the higher number of data points (see Table 2). As
before, a Wilcoxon signed-ranks test showed no difference
between the Low Load and High Load conditions, neither for
the inverse temperature parameter 3 (M = 0.344, SD = 0.737
vs. M = 0.424, SD = 0.81; z = 0.202, p = .853, r = .04) nor
for the y parameter (M = 2.247, SD = 3.201 vs. M = 2.771,
SD = 3.448; z = —0.336, p = .751, r = —.067). Again, a
Wilcoxon signed-ranks test on the information parameter w did
reveal a decrease in information integration from the low load
(M = 5.19, SD = 9) to the High Load (M = —1.993, SD = 9.3;
z = —3.35, p = .0003, r = —.67). However, the same test
applied to the learning rate o revealed a decrease in the speed
of integration of new reward information from Low Load (M =
0.495, SD = 0.198) to High Load (M = 0.312, SD = 0.186; z =
3.108, p = .001, r = —.621; Figure 4b). The effect on learning
rate in this analysis is explained by the fact that we considered
all free-choice trials during which participants were performing
the memory task while repeatedly selecting options. As a con-
sequence, the ability to integrate new reward information (ex-
pressed by the learning rate) was also affected.

As an additional check, we fit the gkRL model exclusively on
the free-choices trials in which memory responses were correct
in both the low- and High Load conditions. Wilcoxon signed-
ranks test confirmed our previous results: no differences in
parameter 3 (z = —0.525, p = .615, r = —.105) and parameter
v between low- and High Load conditions (z = —1.0, p = .325,
r = —.202), whereas a higher a was observed in the Low Load
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Figure 4. Information integration. (a) First free trials: Model fit on the first free choice only revealed a decrease
in the information weigh parameter omega (w - that modulates to integration of information into choice values)
during the High Load compared with the Low Load condition, whereas the inverse of temperature beta (3), the
learning rate alpha (o), and the gamma (y) parameter were not affected by the cognitive load. (b) All-free trials:
Model fit on all free choices showed a decrease in information parameter w and the learning rate « in the High
Load condition, whereas both 3 and y were not affected by the cognitive manipulation. (c) Correct memory
choices: Model fit on the trials where participants correctly performed the memory task. The results showed the
same pattern observed when fitting all free choices. Error bars represent the standard error of the mean. * p <

0.05. ™ p < 0.001.

(M = 0.493, SD = 0.229) compared with the High Load (M =
0.321, SD = 0.248) condition (z = 2.516, p = .001, r = .503).
A higher information parameter o was also obtained in the Low
Load (M = 6.02, SD = 8.9) compared with the High Load
(M = —0.827, SD = 7.63) condition (z = 3.4, p = .0002, r =
.686; Figure 4c).

Cognitive Control and Information Integration

Following the results reported in the previous paragraph, cog-
nitive load seems to affect participants’ ability to integrate learned
information into choice values in order to solve exploration-
exploitation problems. As a further investigation, we asked
whether a standard RL (sRL) model that learned reward values
following Equation 1 and entered directly in Equation 4 without
any integration of information, could better explain this “inability”
in integrating information during the cognitive control manipula-
tion. To do so, we compared fits of both the gkRL and sRL models.
During the fitting procedure, we computed negative-log likeli-
hoods of both models and their model evidence (or the log model
evidence—the probability of obtaining the observed data given a
particular model). We adopted an approximation to the (log) model
evidence, namely, the Bayesian information criterion (BIC;
Schwarz, 1978). We conducted a frequentist analysis with BIC
values of the two models (fitted to the first free-choice trials)
entered into a ¢ test. Results showed that during the Low Load
condition the gkRL model (BIC,g,; = 184) best represented
participants’ data compared with sRL (BICy, = 203),

1(24) = —3.034, p = .005, d = 0.455, replicating our previous
findings on reward and information integration during this new
version of the bandit task (Cogliati Dezza et al., 2017). However,
in the High Load condition, neither the gkRL model (BIC,-
krL = 218) nor the sRL model (BIC,; = 214) better repre-
sented participants’ data, #(24) = 0.437, p = .666,d = —0.076.
To better understand this point, we individually investigated the
BIC values of each model (see Figure 5). Although in the Low
Load condition, the performance of the majority of participants
was better explained by the gkRL model (Figure 5a), in the High
Load condition, approximately 60% of participants were better
represented by the SRL model (whereas the behavior of 20% were
better explained by the gkRL model, and 20% were equally ex-
plained by both models; Figure 5b), confirming that during the
High Load condition, information processing was heavily compro-
mised, and that for the majority of subjects, the computation of
information was nullified. Furthermore, we extended the compar-
ison of the two computational models to all free-choice trials to
have an exhaustive understanding of the hidden processes. Con-
trary to our previous model comparison in the High Load condi-
tion, results showed that, when fit to all free-choice trials, the
gkRL model (BIC,,, = 802) best represented participants’ data
compared with the sRL model (BIC,; = 849),1#24) = —3.4,p =
.002, d = 0.258 (we obtained the same result in the Low Load
condition, so the results are not reported here).

A possible reason behind this apparently incoherent result could
be related to the working memory process itself. The memory
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Figure 5. Comparative fit of the gkRL and sRL. The comparison of the fit is based on the Bayesian information
criterion (BIC) values of both models during the (a) Low Load and (b) High Load conditions. Each point
represents one participant. The sRL fit better when the point is below the identity line. When a point lays on the
identity line, the models equally explain participants’ behavior. See the online article for the color version of this

figure.

sequence was presented to participants at the beginning of the
free-choice task only: Cognitive load may be reduced during later
free-choice trials either as a consequence of inability to maintain
the complete sequence over the course of the free-choice task (and
thus freeing cognitive resources for making choices), or because
cognitive demands related to maintaining the sequence are higher
immediately following the presentation of the sequence. We there-
fore investigated participants’ behavior during all free-choice trials
to better clarify this point. However, after the first free-choice trial,
it is not possible to distinguish between random and directed
exploration due to a confound between reward and information
(Wilson et al., 2014). For this reason, in order to investigate
participants’ behavior during the all-free-choice trials, we focused
on information-based processes only. To do so, we computed the
probability of selecting the least-seen deck (the option visited the
least number of times in the previous trials), the most-seen deck
(the option visited the most number of times in the previous trials),
and the middle-seen deck (when previous criteria did not match)
during both load conditions. When we investigated the behavior
globally, the analysis gave similar results observed in the previous
behavioral analysis (see the Cognitive Control And Decision Strat-
egies section), in which the probability of selecting the least-seen
option was reduced during the High Load (M = 0.255, SD =
0.099) compared with the Low Load (M = 0.304, SD = 0.071)
condition (z = —2.652, p = .006, r = —.53), whereas the most-
seen showed the opposite pattern an increase in the High Load
(M = 0.573, SD = 0.121) compared with the Low Load (M =
0.531, SD = 0.092) condition (z = 2.18, p = .028, r = .436; the
probability of choosing the middle-seen option did not differ, and
so we will not consider this strategy any further; Figure 6a).
However, investigating the trial-by-trial probability revealed a
more exhaustive view. Indeed, the above result was true only for
the first three free-choice trials (all ps < 10~ 2), whereas we did not
observe differences in terms of the most-seen and least-seen op-
tions during the last three trials (all ps > .05; Figure 6b). These
results suggest that the effect of cognitive load was greatest during

the first free-choice trials and vanished during the last trials,
suggesting that the reason behind the better performance of gKRL
compared with sRL in explaining all participants’ free choices was
related to a decrease in cognitive load in the last trials of each
game. Considering that the previous analyses focused on informa-
tion only, it is possible that additional factors may inform choice
behavior in free-choice trials. To examine this, we also computed
switch/stay probabilities for free-choice trials. Switch/stay behav-
ior changed in the High Load (M., = 0.416, SD e = 0.165;
My,, = 0584, SD,, = 0.165) compared with Low Load
(Myieern = 0.476, SD = 0.118; M,, = 0.533, SDg,, =
0.118) condition (both ps = .042). However, differences in switch/
stay behavior were most apparent on the first free-choice trial—
subjects tended to switch choices but did so more often in the Low
Load condition (see Figure 7). Results showed that in the last trials
of each game, stay (switch) probability did not change between
High Load and Low Load conditions (all ps > .05), confirming
that a decrease in cognitive load occurred in the last trials of each
game.

switch

From the Model to Behavior

The results reported in the previous paragraph demonstrate that
the gkRL model better accounts for our behavioral data relative to
SRL. In order to demonstrate that the gkRL model parameters are
behaviorally relevant, we correlated the differences observed be-
tween the two load conditions in the information-integration pa-
rameter o with the differences in exploitation in the unequal
information condition. If the model captures behavioral dynamics,
we should expect increased differences between the estimate of
parameter o in the two load conditions as well as increased
differences in exploitation between the two load conditions. We
observed a positive correlation between the difference in w and the
difference in exploitation (Pearson correlation, r{23] = 413, p =
.039), suggesting that reduction of the integration of new informa-
tion was associated with increased exploitative behaviors. Addi-
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Figure 6. Seen analysis. (a) Probability to choose the option seen least, middle, and most of the time during
the free-choice task. Choices toward the least-seen option decreased during the High Load compared with the
Low Load condition, whereas choices toward most-seen options showed the opposite pattern. (b) Probability to
choose the option seen most (most-seen options), least (least-seen options), and middle (middle-seen options) of
the time during the free-choice task split by trial. During the first three free trials, the probability to choose the
least-seen option (and most-seen option) differs significantly, whereas in the last free-choice trials, no difference
was observed. To avoid overloading the visualization, we reported only when the comparisons did not reach
significance threshold. Error bars represent the standard error of the mean. * p < 0.05. ™ p < 0.01.

tionally, simulations of the model are also able to reproduce the
condition-dependent behavioral results we observe in our data. We
simulated the gkRL model 80 times under the two loading condi-
tions. In the High Load condition, w values were randomly drawn
from a uniform distribution with mean —2, whereas for the Low
Load condition, the mean was set to 5. The other parameters did
not change between the two conditions, and their values were
randomly chosen from a uniform distribution, with the mean set
around the mean values observed in participants’ data. We then
labeled the model’s choices in the unequal information condition
as directed exploratory, random exploratory, and exploitative.
We conducted a 2 (condition: High Load, Low Load) X 3
(strategies: exploitation, random exploration, directed explora-
tion) nonparametric ANOVA. Results showed an effect of strat-
egy, F(2, 395) = 223.04), p < 10715, n% = (.53, and a Condi-
tion X Strategy interaction, F(2, 395) = 240.52,p < 10715, ng =
0.549. The effect of condition did not reach the significant thresh-
old (p = .5). The results mimicked the same behavioral pattern
observed in participants’ data (Figure 8a). Additionally, we com-

puted random exploration and exploitation in the equal information
condition. We conducted a 2 (condition: High Load, Low Load) X 2
(strategies:  exploitation, random exploration) nonparametric
ANOVA. Results showed an effect of strategy, F(2, 237) = 382.89,
p < 107'%, m2 = 0.617; however, neither an effect of Condition X
Strategy nor of condition was observed (all ps > .05; Figure 8b). The
behavior of the model in the equal information condition, however,
did not replicate the findings observed in participants’ data. We
discuss this result in more depth in the next section.

Cognitive Control and Value Degradation

In order to understand the underlying mechanisms affected in
the equal information condition that are not captured by the
information-integration account expressed by the gkRL model, we
implemented a new version of the gkRL model—the value
gamma-knowledge RL (vgkRL). The rationale behind this addi-
tional model implementation is that cognitive load might have
affected processes concerning both information integration (as
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Figure 7. Switch/stay strategy. (a) Probability of staying with the same option chosen at trial t—1 during
the free-choice task. During last free-choice trials, the probability to stay with the same option did not differ
between the two loading conditions. (b) Probability of switching from the option chosen at trial t—1 during
the free-choice task. During last free-choice trials, the probability to switch did not differ between the two

loading conditions. Error bars represent the standard error of the mean. n.s. =

captured by the gkRL model) as well as reward information.
Indeed, the gkRL model was developed primarily in order to
capture participants’ behavior in the unequal sampling scenario, in
which differences in information are expected to have a large
influence on exploration-exploitation decisions (Cogliati Dezza et
al., 2017). However, model simulations in the equal information

not significant.

condition appear to suggest that cognitive load may additionally
degrade the integration of reward information into an overall
choice value. In order to investigate this reward degradation ac-
count, the vgkRL adds an integration of reward values on top of
the information integration expressed in gkRL. Equation 3 thus
becomes

a Unequal Info Condition b Equal Info Condition

1.001 1.001

0.75 0.75] s
z z &
5 ¥
5 o [ 5
a 0.50 s a 0.50] Condition
P Py M High Load
[} [} Low Load
2 2
£ £ ns
o I o ue

0.251 0.257

-
0.00; 0.001
Directed Exploit Random Exploit Random
Strategy Strategy

Figure 8. Gamma-knowledge reinforcement learning model simulation. (a) In the unequal information
condition, the model simulated under the two loading conditions reproduced the same behavioral pattern
observed in participants: Directed exploration decreased in the High Load condition, whereas random
exploration and exploitation increased in Low Load condition. (b) In the equal information condition, no
behavioral differences in exploitation and random exploration were observed between the two loading
conditions. Only the comparisons that did not reach significance threshold are reported. Info = information.

*

* p < 0.001. n.s. = non significant.
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where p indicates the degree by which reward values are integrated
in choice values. We fitted vgkRL to participants’ data and sim-
ulated the model using the retrieved parameters. We then analyzed
model behavior in both unequal and equal information conditions.
In the unequal condition, we conducted a 2 (condition: High Load,
Low Load) X 3 (strategies: exploitation, random exploration,
directed exploration) nonparametric ANOVA. Results showed an
effect of strategy, F(2, 110) = 21), p < 1077, ng = 0.144, and a
Condition X Strategy interaction, F(2, 110) = 4.79,p = .01, n} =
0.743 (Figure 9a). The effect of condition did not reach the
significant threshold (p = .9). Post hoc comparisons revealed the
same pattern observed in participants’ behavior in which directed
exploration decreases, whereas random exploration increases, in
the High Load compared with the Low Load condition (all ps <
.05). On the contrary, exploitation did not differ between the two
conditions (p > .05). Subsequently, we conducted a 2 (condition:
High Load, Low Load) X 2 (strategies: exploitation, random
exploration) nonparametric ANOVA in the equal information con-
dition. Results showed an effect of strategy, F(2, 72) = 23.87),
p < 107, m? = 0.249, and a Condition X Strategy interaction,
F(2,72) = 6.16, p = .015, n; = 0.079 (Figure 9b). The effect of
condition did not reach the significant threshold (p = .986). Post
hoc comparisons revealed the same pattern observed in partici-
pants’ behavior in which exploitation decreases, whereas random
exploration increases, in the High Load compared with the Low
Load condition (all ps < .05). These results seem to suggest that
on the top of the information degradation process occurring in the
unequal information condition, cognitive load also affected reward
value degradation captured by the p parameter in vgkRL model.
Therefore, cognitive load appears to specifically interfere with the
ability to combine reward and information in order to inform
choices. To better test this hypothesis, we compared the estimated
parameters of the model between the two conditions. Unfortu-
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nately, the analysis did not reveal any differences in the estimated
parameters between the Low Load and High Load conditions (all
ps > .05). The reason behind this counterintuitive result might be
that when adding parameters to the model, higher numbers of data
points are necessary in order to obtain a reliable estimate within
the same statistical power. Thus, the fitting procedure was less
powerful and less able to recover the accurate estimates.

Discussion

The results of this study challenge a popular view concerning
the cognitive mechanisms underlying the resolution of the
exploration-exploitation dilemma. Specifically, following this per-
spective, the dilemma is considered as a binary process and cog-
nitive control as the main underlying mechanism that is required in
order to override default exploitative strategies in favor of explo-
ration of the surrounding environment (Cohen et al., 2007; Daw et
al., 2006). Our results showed that, indeed, the need for cognitive
control seems necessary when resolving the dilemma. However,
increased cognitive load appears to affect only one aspect of
exploration, namely, directed exploration, and the effect of cogni-
tive load on exploration seems to be driven mostly by information
degradation. Additionally, our results unveiled a different facet of
exploitative behaviors that moves away from the traditional view
of exploitation as a “default strategy.” Together, these findings
shed additional light on the mechanisms underlying adaptive con-
trol and behavior and suggest new approaches for interpreting the
exploration-exploitation dilemma. In the following, we discuss the
implications of our main results.

In line with what could be expected because of dual-task inter-
ference (Herath, Klingberg, Young, Amunts, & Roland, 2001),
participants’ choice RTs were affected by high cognitive load,
suggesting that participants cognitive control resources were ef-
fectively reduced in this condition. Further analyses showed that
high cognitive load affected participants’ performance on the gam-

Equal Info Condition

Condition
» M High Load
Low Load

Random

Exploit
Strategy

Figure 9. Value gamma-knowledge reinforcement learning simulation. This simulation reproduced a similar
pattern observed in participants’ data in both the (a) unequal information condition, and (b) equal information
condition. Info = information. * p < 0.05. ™ p < 0.001.
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bling task in terms of choosing the option associated with highest
reward (i.e., overall performance). Under both load conditions,
overall performance was above chance-level. However, during the
High Load condition, participants were slower in integrating new
evidence, as shown by the decrease in the learning rate during the
free-choice task, which, in turn, might explain the decrease in
overall participants’ performance.

One of the main results of this study concerns the antagonist
effects of cognitive load on the two exploratory strategies. Specif-
ically, increased cognitive load resulted in a decrease in directed
exploration and an increase in random exploration, suggesting that
directed exploration depends on the availability of sufficient con-
trol resources, and that depletion of such resources promotes
random exploration. This result presents a different picture con-
cerning the involvement of cognitive control in the resolution of
the exploration-exploitation dilemma compared with that sug-
gested by the behavioral control hypothesis (Cohen et al., 2007;
Daw et al., 2006). Resolving the dilemma through exploration
seems to not be a unitary process that always requires cognitive
resources to be mustered, independent of the type of exploratory
strategies adopted. On the contrary, the resolution of the dilemma
through exploration is a multifaceted phenomenon (Somerville et
al., 2017; Warren et al., 2017; Wilson et al., 2014; Zajkowski et al.,
2017), and cognitive control seems to intervene only when explor-
ing the environment in a directed, intentional manner. These
results are in line with recent studies that suggest that random and
directed exploration are distinct strategies, even if based on a
common exploratory drive (Cogliati Dezza et al., 2017; Zajkowski
et al., 2017).

Furthermore, when interfering with the resolution of the di-
lemma, cognitive control cooperates with those aspects of explo-
ration related with the integration of information into choice val-
ues. Under cognitive load, participants were more prone to stay
with the same option (as shown by effects of cognitive load in the
switch/stay behavior), penalizing the search for new information.
This result is in line with several studies on information-based
processes concerning the exploration-exploitation dilemma that
collectively highlight a tight association between information-
based exploration (directed exploration) with prefrontal areas in-
volved in higher level cognitive processes (Badre et al., 2012;
Cavanagh et al., 2012) as well as the prefrontal dopamine network
(Frank et al., 2009; Kayser, Mitchell, Weinstein, & Frank, 2015).
However, our results appear to contrast with a study by Daw and
colleagues (2006) that suggested a crucial role for top-down con-
trol processes in random exploration. In their study, activity in
brain regions associated with higher level cognitive functions (i.e.,
frontopolar cortex) was associated with the probability of ran-
domly exploring options. Frontopolar cortex was subsequently
associated with switching between strategies instead of targeting
exploratory strategy itself (Boorman, Behrens, Woolrich, & Rush-
worth, 2009), and transcranial magnetic stimulation studies of this
region affected only directed exploration (Zajkowski et al., 2017).
Clearly, more research is needed to understand the neuronal and
neurochemical mechanisms underlying exploration in light of the
new and recent evidence on directed and random exploration.

Our results are in line with a recent finding that showed higher
cognitive costs associated with those processes involved in reflex-
ive exploration (Otto et al., 2014). Specifically, cognitive load
seems to affect participants’ ability to use a model of the environ-

ment in which environmental statistics (i.e., state transition prob-
abilities) and reward structure are integrated into choice values in
order to guide exploratory behaviors. However, our results suggest
a more nuanced view concerning this phenomenon: The results of
our model fits suggested that reducing cognitive resources specif-
ically affected those processes involved in information integration,
whereas processes involved in transforming probability distribu-
tions into action selection (decreasing or increasing the level of
noise in the system through a softmax function) were unaffected.
Moreover, the effect of cognitive load on information is restricted
to integration and not to other aspects of the information process-
ing, such as information decay (which might be captured by
differences in the gamma parameter). In our study, however, we
approached the computational problem using a model-free strat-
egy, in which choices are only driven by past experience (infor-
mation and reward history) without a representational character-
ization of the environment (contrary to a model-based strategy, in
which choices are driven by the model of the world; Daw, Niv, &
Dayan, 2005). It might be possible that in real-life scenarios,
humans adopt model-based approaches when facing exploration
and exploitation problems, requiring more complex and resource-
intensive computations that are only approximated by the manner
in which information is integrated in the gkRL model. The relation
between model-based strategy and information integration should
be addressed by future research.

Our results further question the interpretation of exploitation as
a default strategy that requires cognitive control to be inhibited
(Cohen et al., 2007; Daw et al., 2006). Contrary to what might
have been expected by the behavioral control hypothesis (Cohen et
al., 2007), exploitation was affected by the cognitive control ma-
nipulation in such a way that when participants visited the options
the same number of times (i.e., equal information condition), they
decreased exploitative choices during the High Load condition.
This finding seems to suggest that, under certain scenarios, cog-
nitive control is necessary to achieve exploitation, as in the other
goal-directed behaviors. That is, choosing to exploit requires cog-
nitive resources in a fashion similar to choosing to explore. Our
results are in line with recent findings on cognitive foraging, in
which exploring other patches or exploiting familiar patches in-
volved similar cognitive mechanisms (Hills, Todd, & Goldstone,
2010). Our results also provide support for the view that considers
exploitation not only as the strategy that selects best rewarded
actions but also as a strategy that relies on cognitive control
resources to maintain task demands (Hills et al., 2010). Sticking
with the same option can be considered as a subgoal of the higher
goal of maximizing reward in the long run, and maintaining
attention between competing task demands required higher cogni-
tive control functions (e.g., the cocktail party phenomenon; Con-
way, Cowan, & Bunting, 2001; Hills et al., 2010). A drawback,
however, is that our model was unable to capture this phenomenon
(Figure 8b). Indeed, gkRL was developed in order to capture
human behavior in unequal sampling scenarios (Cogliati Dezza et
al., 2017). In order to understand the underlying mechanisms of the
effect of cognitive load on the exploitation, we presented an
implementation of the gkRL model in which the integration of
reward into choice value was also modulated. Simulations of this
model showed that the reward value degradation might be the
underlying mechanism behind the decrease in exploitation in the
equal information condition. However, the limited number of trials
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available in our paradigm precluded a definitive answer to this
question. Further work is needed in order to understand how
cognitive control might influence choice value computation.

Taken together, our results suggest a new perspective on the
exploration-exploitation dilemma as the product of multiple com-
peting control modes that jointly promote adaptive behavior
through increased emphasis on stability or flexibility. Similar to
cognitive search modes (Hommel, 2012), the differences between
these control modes might be in the control style they call for: a
divergent decision-making style—one goal representation that di-
verges to different action selections (or perceptual representations
in the case of cognitive search)—and a convergent style, in which
a potential number of possible actions (or a number of represen-
tations) converges toward an optimal solution (Hommel, 2012). At
the neural level, these different modes may be represented by tonic
and phasic activity in the locus coeruleus (LC) expressed by the
release of norepinephrine (NE; Aston-Jones & Cohen, 2005).
LC-NE is the target of projections from cortical regions implicated
in cognitive control and adaptive behavior, including regions in-
volved in processing information regarding behaviorally salient
changes in the environment (e.g., anterior cingulate cortex. ante-
rior insula, and orbitofrontal cortex). Following unexpected
changes in the environment, tonic LC-NE activity may favor
adaptive exploration by allowing disengagement from current task
demands (Yu & Dayan, 2005). On the other hand, in stable
environments, phasic LC-NE activity may promote exploitative
behavior by increasing attention toward task-relevant stimuli and
maintenance of the current goal (Aston-Jones & Cohen, 2005;
Jepma & Nieuwenhuis, 2011). This perspective, however, leaves
many questions unanswered. For example, the interaction between
these control modes and the regions previously associated with
exploration (i.e., frontopolar cortex) is still unknown and needs to
be addressed by future research. Moreover, random exploration,
but not directed exploration, was affected by pharmacological
manipulation of baseline NE levels (Warren et al., 2017), ques-
tioning how the LC-NE system may control the two exploratory
strategies and which is the role of random exploration in this
mode-based trade-off. So far, random exploration seems to be a
low-level (Warren et al., 2017) or automatic action control process
(Humphries et al., 2012) that might be necessary when a less
engaging or faster behavioral adaption is required. However, the
exact manner in which low-level control interacts with higher
cognitive control remains an open question and should be the
subject of future research.

Although our study adds additional perspective on the cogni-
tive mechanisms underlying the resolution of the exploration-
exploitation dilemma by humans, there are nonetheless limitations
that may influence the scope of our results. Besides the limitation
of the computational model previously discussed, the absence of a
horizon manipulation in our paradigm makes it impossible to
distinguish whether the increase in random exploration in the High
Load condition was related to random exploration itself (changes
in randomness in long horizon) or by an overall increase in
randomness (Krueger, 2017). In the same line, the information-
integration parameter was not horizon-dependent. Thus, we cannot
explain the effect of cognitive load on information integration on
a trial basis. Additionally, although ambiguity appears to modulate
the tension between exploration and exploitation (Krueger, 2017;
Wilson et al., 2014), we did not specifically investigate this aspect

in this study. Lastly, we did not compute participants’ memory
span, preventing us from delineating individual profiles concern-
ing the efficacy of our experimental manipulation.

Regardless of these limitations, using a recently developed
behavioral paradigm (Wilson et al., 2014), we disentangled the
role of cognitive control in the resolution of the exploration-
exploitation dilemma. Our results emphasized the multifaceted
nature of the resolution of the dilemma and suggest that multiple
cognitive control modes are the underlying cognitive mechanisms.
This study is in line with a new perspective on how to look at the
exploration-exploitation dilemma, and provides a formal founda-
tion within which to explore pathologies of goal-directed behavior
such as manifest in addiction, obsessive—compulsive disorders,
and attentional deficits.
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