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Anterior cingulate and dorsolateral prefrontal cortex (ACC and dlPFC,
respectively) are core components of the cognitive control network. Acti-
vation of these regions is routinely observed in tasks that involve moni-
toring the external environment and maintaining information in order to
generate appropriate responses. Despite the ubiquity of studies report-
ing coactivation of these two regions, a consensus on how they interact
to support cognitive control has yet to emerge. In this letter, we present
a new hypothesis and computational model of ACC and dlPFC. The er-
ror representation hypothesis states that multidimensional error signals
generated by ACC in response to surprising outcomes are used to train
representations of expected error in dlPFC, which are then associated
with relevant task stimuli. Error representations maintained in dlPFC
are in turn used to modulate predictive activity in ACC in order to gen-
erate better estimates of the likely outcomes of actions. We formalize
the error representation hypothesis in a new computational model based
on our previous model of ACC. The hierarchical error representation
(HER) model of ACC/dlPFC suggests a mechanism by which hierarchi-
cally organized layers within ACC and dlPFC interact in order to solve
sophisticated cognitive tasks. In a series of simulations, we demonstrate
the ability of the HER model to autonomously learn to perform structured
tasks in a manner comparable to human performance, and we show that
the HER model outperforms current deep learning networks by an order
of magnitude.

1 Introduction

Working memory for task sets and strategies is thought to depend heavily
on the dorsal lateral prefrontal cortex (dlPFC; Nee & Brown, 2012). While it
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is known that dorsolateral prefrontal cortex (dlPFC) cells show sustained ac-
tivity that is thought to underlie working memory (Niki & Watanabe, 1979),
little is known about how dlPFC representations are formed (Seger & Miller,
2010) or how they self-organize into hierarchical representations (Badre &
D’Esposito, 2009; Badre & Frank, 2012; Badre, Kayser, & D’Esposito, 2010;
Collins & Frank, 2013; Koechlin, Ody, & Kouneiher, 2003; Nee, Jahn, &
Brown, 2013). Furthermore, it is not clear how these self-organized hier-
archical representations learn exactly when to store information related to
task set, for how long to maintain the information, and when to release the
information. Some models have addressed some of these issues (Collins &
Frank, 2013; O’Reilly & Frank, 2006), but currently it is unclear how working
memory representations of task-related stimuli can efficiently self-organize
into hierarchies and at the same time learn when and for how long to main-
tain specific information that is needed for optimal task performance. Here
we propose a model of the interactions of the dlPFC and anterior cingulate
cortex (ACC) that addresses both of these issues. The new model, based on
results from empirical and theoretical neuroscience, is able to autonomously
learn complex cognitive tasks in a manner comparable to humans, as well
as providing substantial performance improvements over existing machine
learning methods.

Coactivation of ACC and dlPFC is commonly observed in neuroimaging
studies of cognitive control. Although the regions are thought to interact
to support top-down control (MacDonald, 2000), a quantitative account of
such interactions remains elusive. Qualitative interpretations suggest that
ACC may signal the need for control that is then implemented by dlPFC
(Botvinick, Braver, Barch, Carter, & Cohen, 2001), that ACC indicates the
need for shifts in attention to external stimuli or task sets associated with
behavior (Bush, Luu, & Posner, 2000; Donoso, Collins, & Koechlin, 2014;
Kolling, Behrens, Mars, & Rushworth, 2012; Shima & Tanji, 1998), which
are then executed by dlPFC, or that ACC selects action plans executed by
dlPFC and monitors the results of actions (Holroyd & Yeung, 2012). Despite
these proposals, efforts to develop computational models that are able to
describe and predict interactions are still in the early stages.

A possible reason for the lack of computational accounts regarding such
interactions may be the lack of a consensus regarding the computational
function of each region independent of its involvement in a larger cognitive
control network. dlPFC is generally considered to be a region concerned
with representing rules or task sets needed to perform a task (Miller &
Cohen, 2001), though not necessarily in representing stimuli per se (Riggall
& Postle, 2012), especially for tasks in which such information may need
to be maintained over a period of time in order to successfully guide be-
havior (“working memory”; Nee, Jahn, & Brown, 2013; Niki & Watanabe,
1979). dlPFC also appears to be involved in representing higher-order task-
information (Koechlin, Ody, & Kouneiher, 2003). Recent evidence indicates
that dlPFC may signal a state prediction error derived from model-based
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reinforcement learning (RL) algorithms (Gläscher, Daw, Dayan, & O’Dohe-
rty, 2010). Finally, dlPFC is thought to be organized along a rostrocaudal
abstraction gradient, with more rostral regions representing successively
more abstract task information (Badre & D’Esposito, 2007; Koechlin et al.,
2003; Nee & Brown, 2013; Reynolds, O’Reilly, Cohen, & Braver, 2012).

The function of ACC has also been the subject of intense debate. The ac-
tivity of ACC in cognitive control tasks has variously been attributed to error
signaling and processing (Gehring, Coles, Meyer, & Donchin, 1990; Holroyd
& Coles, 2002), conflict detection and resolution (Botvinick et al., 2001; Ye-
ung, Cohen, & Botvinick, 2004), learning action values (Rudebeck et al.,
2008; Walton, Devlin, & Rushworth, 2004), reward prediction (Amador,
Schlag-Rey, & Schlag, 2000), predicting the likelihood of error (Brown &
Braver, 2005), environmental volatility (Behrens, Woolrich, Walton, & Rush-
worth, 2007), and many more.

Despite this proliferation of competing accounts regarding ACC activity,
a recent computational model of ACC and the surrounding medial pre-
frontal cortex (mPFC) has provided a comprehensive account of the role of
ACC that unifies observations on ACC from fMRI, EEG, behavioral, and
single-unit neurophysiology studies and across a variety of subfields in neu-
roscience, including cognitive, social, and affective neuroscience (Alexander
& Brown, 2011, 2014). The PRO model states that ACC/mPFC learns predic-
tions of the likely outcomes of actions, regardless of affective valence, and
signals surprising deviations from expected outcomes. Given the success of
the PRO model in accounting for existing data and providing an explana-
tory framework for studies conducted after its publication, it is possible
that the two key signals attributed to ACC/mPFC by the PRO model, pre-
diction of action outcomes and prediction error, can provide insight into
the manner in which ACC/mPFC interacts with dlPFC.

The PRO model begins with several key concepts that form the ba-
sis for the expanded model below. First, predictions at the neural level
are represented by neurons that are trained to reliably increase their fir-
ing just before a corresponding event is likely to occur. Events that are
more likely will elicit stronger firing, and the activity peaks around the
time when the event is most likely to occur. Second, outcome signals at
the neural level are represented by neurons that are reliably activated as
a consequence of some event. Outcomes in general may depend on prior
actions taken by the agent. Finally, prediction errors (or surprise signals)
are computed as the difference between a prediction and an outcome sig-
nal. In the PRO model, the negative surprise (nonoccurrence) prediction
error is computed by cells that are excited by predictions and inhibited
by outcomes. These neural signals collectively are the fundamental build-
ing blocks of the models described below. The neural origins of these sig-
nals have been described in the original PRO model paper (Alexander &
Brown, 2011) and are also depicted in Figure 1A and equations 2.1 and 2.2
below.
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How might the prediction and surprise signals generated by the PRO
model inform our understanding of dlPFC? First, in the PRO model, pre-
dictions regarding the likely outcomes of actions are learned on the basis
of current stimuli. Although this explains ACC activity for simple tasks
in which only a single stimulus-action-outcome sequence is observed on a
trial, it does not address ACC involvement in tasks, such as the 1-2AX task
(Krueger & Dayan, 2009; O’Reilly & Frank, 2006), in which the outcomes
of an action are highly dependent on previously observed stimuli. This
constrains the possible interactions with regions outside the cingulate in
that, in order for predictions generated in ACC to be appropriately contex-
tualized, at least some region should provide inputs to ACC that in some
manner modulate the predictions that are generated by ACC. Put simply,
the ACC must know about not only the present but also the past events in
order to generate an appropriate prediction, and empirical evidence sug-
gests that it does in fact have information about past events (Kennerley,
Walton, Behrens, Buckley, & Rushworth, 2006). Second, the error signal
generated by the PRO model is used to update prediction weights in order
to refine predictions, and this appears to occur within ACC without the
involvement of other regions (Jahn, Nee, Alexander, & Brown, 2014). As
noted above, however, the model itself learns only simple associations of
a stimulus with its outcome. Still, the error signal generated by ACC may
serve additional roles beyond the cingulate pertaining to the allocation of
additional neural resources for contexts in which simple stimulus-action-
outcome associations are insufficient to meet task demands.

Accordingly, in this letter, we propose a new hypothesis and model of
ACC/dlPFC interaction. The error representation hypothesis proposes that
multidimensional error signals generated by ACC are used to train error
prediction representations in dlPFC, and, once trained, error representa-
tions maintained by dlPFC are a basis of working memory signals that
suffice to guide task performance. Specifically, the dlPFC learns to maintain
representations of stimuli that reliably co-occur with prediction errors (Fris-
ton, 2010). In turn, the dlPFC error prediction representations are deployed
by ACC to refine predictions about the likely outcomes of actions. Here
we formalize the error representation hypothesis in a new computational
model of ACC/dlPFC, the hierarchical error representation (HER) model.

The HER model proposes that within a hierarchical organization of lay-
ers in prefrontal cortex, higher layers learn to predict the expected error of
predictions made by lower layers and that predictions generated by lower
layers are modulated by the error predictions generated by higher lay-
ers. Generally the two computational roles of the model, prediction error
and prediction maintenance, are associated with mPFC and dlPFC, respec-
tively. The HER model extends the PRO model of mPFC by suggesting a
hierarchical organization of mPFC in which multiple regions, arranged in
discrete layers following a rostrocaudal gradient (Taren, Venkatraman, &
Huettel, 2011), learn predictions of progressively more abstract outcomes
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and signal surprising deviations from those outcomes. Additionally, the
HER model proposes that learning in dlPFC is driven by error prediction
signals originating in mPFC and that dlPFC influences activity in mPFC
through modulation of specific predictions generated by mPFC. In the HER
model, dlPFC learns to maintain specifically the information that predicts
errors. Of course, if the information is sufficient to predict that a response
will be an error, then it may also be useful in biasing behavior, either toward
a correct response or away from responses associated with error feedback.
In this way, the dlPFC learns to represent (and maintain as sustained activ-
ity in working memory) exactly the information that is necessary to guide
behavior.

2 Methods

2.1 Model Description

2.1.1 General Modeling Approach. In our previous model of ACC/mPFC
(Alexander & Brown, 2011), we adopted a reinforcement learning (RL)
framework based on temporal difference learning (Sutton, 1990; Sutton &
Barto, 1990) in which discrete iterations of the model corresponded with
passage of a certain amount of real time. This approach is distinct from clas-
sical models of associative learning (Mackintosh, 1975; Pearce & Hall, 1980;
Rescorla, 1971) in which stimuli and their consequences are effectively pre-
sented simultaneously, that is, trial-level models. In this level, we adopt an
intermediate approach in which salient sensory and behavioral events are
modeled sequentially (effectively an event-level model). On each iteration
of the model, a stimulus is presented and values, such as working memory
representations and outcome predictions, within the model are updated
accordingly. After this update, a response is generated by the model (de-
scribed in detail below), and feedback related to the outcome is delivered to
the model, with attendant updates in adjustable weights within the model.
Decay parameters, where applicable, are applied following this sequence,
and the next model iteration begins. Functionally, this approach to model-
ing working memory components is comparable to models with real-time
dynamics (O’Reilly & Frank, 2006), which nonetheless interpret working
memory representations as being essentially on or off for the duration in
which the item is in working memory.

The HER model (see Figure 1) is organized hierarchically in layers: func-
tionally segregated computational blocks that interact with other layers in
a highly constrained manner (see Figures 1A and 1B). Generally the hier-
archical organization of the model corresponds to an increasing caudal to
rostral abstraction gradient hypothesized to exist in prefrontal cortex. The
exact number of discrete regions associated with this theoretical organiza-
tion of PFC in a hierarchy varies between authors and papers, although
observed activity in lateral PFC tends to indicate three to five hierarchical
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Figure 1: The HER model: Circled numbers indicate corresponding equations
in the main text. Bold, underlined, italicized letters reflect equation variables.
Note that the dimensions of the network depicted do not correspond to the sim-
ulations described in this letter. (A) A single layer of the HER model has the same
form as the PRO model of anterior cingulate in that a stimulus representation
produces predictions of multiple possible response-outcome (RO) conjunctions
and is trained by a vector-valued error signal. While the PRO model formed
predictions based on any stimuli that were presented to the model, the HER
model includes a gating mechanism that determines whether an external stim-
ulus will be granted access to internal model representations. The architecture
of a single layer forms a motif that is repeated at additional hierarchical layers.
(B) Interaction between layers in the model follows bottom-up and top-down
paths. Prediction errors generated at an inferior layer serve as proxy outcomes
for superior layers, which then form predictions regarding future errors that are
likely to be observed given the contents of working memory (WM) at the su-
perior layer. Such predictions are then used to modulate predictions generated
by inferior layers. (C) Top-down flow of information mapped to prefrontal cor-
tex. Rostral mPFC selects from maintained representations in rostral dlPFC in
order to modulate the activity of predictions maintained in caudal dlPFC. This
pattern repeats in successively posterior regions until it terminates in regions
of mPFC associated with generating behavior responses. (D) The bottom-up
flow of information begins with task-related feedback. Error signals are com-
puted in regions of mPFC, which are used to refine predictions in lateral PFC.
Errors calculated in posterior regions are combined with stimulus information
maintained in WM (connections not shown for clarity) and used as feedback
for successively anterior regions.



2360 W. Alexander and J. Brown

layers (Badre, 2008; Koechlin et al., 2003; Nee et al., 2013). In the simulations
we describe, we use a version of the HER model with three layers, though
in principle it is possible to add an arbitrary number of additional layers,
notwithstanding hardware limitations. Although the nomenclature used
to describe regions within lateral PFC also tends to vary among research
groups, the discrete layers in the three-layer model may correspond roughly
to the regions identified by Koechlin et al. (2003), in which the lowest layer
of the HER model (layer 1) is identified with dorsal premotor cortex (PMd),
and successive layers correspond to caudal and rostral dlPFC. In addition to
a rostrocaudal organization, the model has a medial to lateral organization
(see Figures 1C and 1D), with medial regions engaging in computation of
prediction error (mPFC) and selection of currently applicable predictions,
and lateral regions maintaining predictions of outcome error (dlPFC). The
first layer of the hierarchy is functionally equivalent to the PRO model
(Alexander & Brown, 2011); it learns to predict action-outcomes and gen-
erates error signals when a predicted outcome fails to occur. Error signals
generated at each level have three functional roles (depicted in Figure 1B
as dashed red arrows). First, as in the initial PRO model, error signals are
used to train predictions of future outcomes within the same level of the
hierarchy. Second, error signals are used to update weights in the basal
ganglia (BG) gating mechanism for updating working memory using a
modified Widrow-Hoff learning rule (Widrow & Hoff, 1960). The BG gat-
ing mechanism determines if stimuli presented to the model are stored in
WM, similar to the mechanism proposed by O’Reilly and Frank (2006).
Third, the conjunction of the error signal with the attended stimulus is used
as an outcome signal for higher layers of the hierarchy. Each layer of the
hierarchy is functionally similar to the PRO model; the lowest hierarchical
layer learns predictions of response-outcome conjunctions, while at higher
layers, the “current” stimulus is taken to be the current contents of working
memory at each level, and the outcome at higher levels is the outer product
of the vector-valued error signal and the stimulus vector from the previ-
ous level. Such conjunctive representations as those formed by the outer
product have been observed in single cells previously, for example, the
gain fields of cells in the parietal cortex (Andersen, Essick, & Siegel, 1985).
By using the error signal generated at lower layers as a proxy outcome,
which is then associated with items stored in WM, higher-order layers in
the model learn a prediction of the likelihood of subsequently observing
a given pattern of errors generated by the lower-order layer. Error signals
generated by higher-order layers are derived by comparing the observed
error signal from the lower-order layer and comparing it to the expected
error signal. Thus, each higher level computes an “error of errors” from
the lower level—hence, the “hierarchical error” component of the model’s
name.

In the HER model, each layer has a WM module that functions separately
from WM modules at other layers of the hierarchy. Each WM module is
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able to store a single stimulus at a time; in order to store a new item at a
given hierarchical layer, any items already stored are removed. Initially, the
“decision” made by the BG mechanism as to whether an item should be
stored in WM is random; as learning progresses, the error signal generated
at a particular hierarchical layer trains BG weights connecting a stimulus
representation to the WM modules. Weights corresponding to items that are
reliably associated with subsequent errors generated by a lower-order layer
are selectively strengthened, leading to preferential storage of that item in
WM. Once stored in WM, items are maintained until a new stimulus is
stored.

2.1.2 Model Components. Although the model is organized into dis-
tinct hierarchical layers, each layer contains functionally identical “moving
parts” that constitute a repeated motif for each of the three hierarchical
layers. In order to describe overall model function, we first describe the
components that are computationally identical for all layers, followed by
equations governing how layers interact with one another. In the equations,
we adopt the following notational conventions: bold, capitalized letters
indicate matrices, bold lowercase letters indicate vectors, italicized low-
ercase letters indicate scalars, model parameters are indicated by Greek
letters, and a superscript T indicates the transpose of a matrix or vector.
The model description focuses on the model equations and their func-
tion. A step-by-step description of how the model learns a simple hierar-
chical task is provided in the supplementary material, available online at
http://www.mitpressjournal.org/doi/suppl/10.1162/NECO_a_00779.

2.1.3 A Note on Nomenclature. In the HER model, each layer learns to
predict likely outcomes and computes errors as the difference between an
expected and actual outcome. While this statement of the model’s func-
tion is straightforward, some confusion is possible when considering the
interactions between hierarchical layers: the outcomes to be predicted at
layer 2 are the prediction errors of layer 1, and thus the terms prediction error
and outcome may refer to the same signal. Similarly, predictions generated
at each layer serve multiple roles: predictions are used to compute an er-
ror signal for training associative weights within each layer, as well as an
outcome signal for superior layers, while they are also used to modulate
predictions at inferior layers in the hierarchy (or, in the case of the first hier-
archical layer, generate model responses). In the remainder of the letter, we
generally adhere to the convention that the signals generated in the HER
model are referred to in their role within a given layer rather than in their
interlayer roles.

2.1.4 Outcome Prediction. As in the PRO model, the HER model learns
predictions of the likely outcomes of actions based on current stimuli
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and signals deviations from expectations. In our event-level model (see
Figure 1A), this function is implemented as a simple feedforward network,

p = WTr, (2.1)

where p is a vector of predictions of outcomes, r is a vector of task stimulus
representations, and W is a weight matrix associating r and p. Errors are
calculated as

e = a(o − p), (2.2)

where o is the vector of observed outcomes and a is a filter that is 0 for
outcomes corresponding to unselected actions and 1 everywhere else. This
essentially prevents learning about the relationship between task stimuli
and the outcomes associated with particular actions that were not chosen.
Weights in the model are updated according to

Wt+1 = Wt + α(etr
T
t ), (2.3)

where α is a learning rate parameter and t indicates the current model
iteration.

2.1.5 Working Memory Gating. At each level of the hierarchy, external
stimuli that have been presented to the model may be stored in WM based
on the learned value of storing that stimulus versus maintaining currently
active WM representations. This notion is similar to the basal ganglia gating
mechanism used in the O’Reilly and Frank (2006) PBWM model, although
since our goal is not to faithfully model basal ganglia, the mechanism used
in the HER model abstracts away many of the neurobiological details of
their model. Additionally, at each level of the hierarchy, we posit a capacity
limit such that only one active WM representation may be maintained at
any time. Although the WM capacity at each layer is limited to a single
item, each layer may store different items in WM at each moment. The total
WM capacity of the model, then, is dependent on the number of layers. In
the simulations described in this letter, three layers are used, and so the
total task WM capacity of the model is three. We also note that WM is not
a unitary construct. Empirical studies show that WM for task rules may
be decodable from the dorsolateral prefrontal cortex (Nee & Brown, 2012),
but WM for sensory representations may be decodable from the sensory
cortices (Riggall & Postle, 2012). Here we treat only WM for task rules, so
in general, human WM capacity would include sensory WM as well and
would thus have a capacity greater than three.

External stimuli are represented as a vector s (and are distinct from inter-
nal representations of stimuli denoted in equations 2.1 and 2.3 as r). Upon
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presentation of a stimulus, the value of s at a given position corresponding
to a fixed, arbitrary, one-to-one mapping of task stimuli to s, is set to 1, indi-
cating a currently observed stimulus. The task stimuli signified by s and r
can be thought of as external and internal stimulus representations, respec-
tively: s is the appearance of a letter on the screen, for example, while r is the
neural representation elicited by that letter. The value of storing the stimu-
lus represented by s in WM versus maintaining current WM representation
r is determined as follows:

v = XTs, (2.4)

where X is a matrix of weights associating external stimuli (s) with cor-
responding WM representations (r). Unless otherwise specified, X fully
connects s and r; each element in s is connected to every element in r The
use of two separate stimulus representations in the model reflects the idea
that the mere presentation of a stimulus does not necessarily guarantee that
an individual will encode it. In order to influence behavior, the existence of
an external stimulus (s) must first be registered by the brain (r). Equation
(2.4) yields a vector v that contains the value of storing the current stimulus
in WM relative to the value of maintaining the current contents of WM.
Since the model maintains only one WM representation at any time for
each level, the value of storing stimulus si(vi) is compared to the value of
maintaining the current contents, rj, of WM (vj). These values are compared
using a softmax function,

probability of storing si = (expβvi + bias)

(expβvi + bias) + expβv j
, (2.5)

where β is a gain parameter governing the probability of selecting the
highest-valued stimulus to store in WM. If there are no active WM rep-
resentations, stimuli that are currently active will automatically be stored.
The bias term in equation 2.5 regulates how likely the model is to update
WM at each layer; high-bias values encourage WM updates regardless of
the value of v, while WM updates for low-bias values are based primarily
on v

Associative weights X are updated through backpropagation of the error
obtained in equation 2.3 (but see the supplementary material for a more bio-
logically plausible demonstration based on reinforcement learning). Rather
than training weights using the stimulus vector s, however, an eligibility
trace vector d is used instead (Barto, Sutton, & Anderson, 1983; Klopf,
1972). When a stimulus i is presented, the value of di is set to 1, indicating
a currently observed stimulus. At each iteration of the model, d is multi-
plied by a constant decay rate parameter, λ indicating gradually decaying
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eligibility traces. The weight matrix X is then updated using the backprop-
agated error:

Xt+1 = Xt + (eT
t Wt · rt )d

T
t . (2.6)

Here the · operator indicates element-wise multiplication, and the term
(eT

t Wt ·rt ) is the error signal backpropagated from the prediction units at
each layer. The purpose of using eligibility traces (rather than currently
visible task stimuli) to train weights in the gating mechanism is to allow the
model to learn information regarding temporally distant events. By train-
ing the gating mechanism on eligibility traces, it effectively learns when
an item in WM ought to be purged in favor of storing a current stimulus.
When a stimulus is not stored in WM and prediction errors are consistently
observed following the failure to store the stimulus, negative weights de-
velop between the stimulus and any other items that were stored in WM
at the time of the prediction error. The eligibility trace allows the repre-
sentation of the item that was not stored to persist over time so as to be
associated with subsequent errors. Note that eligibility traces themselves
cannot be stored in working memory; stimuli can be stored only on the
model iteration in which they are presented. Eligibility traces of this sort
have been used extensively to explain learning in conditions in which a con-
ditioned stimulus (CS) and an unconditioned stimulus (US) are temporally
noncontiguous (Sutton & Barto, 1990). Biologically, eligibility traces may
correspond to persistent, decaying activity in neurons that enables learning
but is not sufficient to evoke postsynaptic activity (Seo, Barraclough, & Lee,
2007). Alternately, an eligibility trace may be realized by a transient increase
in synaptic plasticity following the activation of a neuron, which decays to
baseline over time (Izhikevich, 2007)

2.2 Interactions between Levels of the Hierarchy. Having covered the
components that operate at each layer independent of their involvement in
a hierarchy, we now turn to describing how layers in the HER model interact
with one another. As noted previously, prediction errors generated by mPFC
at a given level of the hierarchy serve as “outcomes” at the next highest level,
and predictions generated by the mPFC and maintained by dlPFC modulate
predictions that are generated by the next lower level. We can generally refer
to these two roles as bottom-up and top-down processing. As a notational
convention, we will use a superscript single quote to refer to variables for
hierarchical layers that are one level higher than nonsuperscripted variables
(e.g., p and p′ refer to predictions generated by layers that are adjacent in
the hierarchy).

2.2.1 Bottom-Up Processes. For a given layer, the error signal from a lower
layer serves as the “outcome” signal. At the lowest layer, outcomes reflect
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conjunctions of actions and outcomes, and error is considered only for
selected actions (see equation 2.2); distinct events (action and feedback) are
interpreted as a single compound event, and the number of possible events
is the number of possible actions multiplied by the number of possible types
of feedback. Similar conjunctions occur for the outcome signals at higher
layers, which are computed as the outer product of the error vector e and
stimulus representation vector r at the lower level to obtain a matrix of
compound events:

O′ = reT. (2.7)

In the case of the second layer of the hierarchy, these events are conjunc-
tions of stimuli, actions, and outcomes. For computational convenience,
this matrix is reshaped into a vector o’. Prediction error at each layer in the
hierarchy is computed using the same form as equation 2.2,

e′ = a′(o′ − p′). (2.8)

2.2.2 Top-Down Processes. For a given layer, the prediction signal p′ ad-
ditively modulates stimulus-specific predictions p, which are generated by
the lower layer. Note that the number of elements in p′ equals the number
of elements in the weight matrix used to generate predictions at the lower
layer. This follows from computing outcome o′ as reT. A single element in p′

corresponds with a single element in W whose value denotes the strength
of the association of a particular stimulus in r with a particular outcome
in o. In order to modulate predictive activity in lower hierarchical layers,
p′ is reshaped into a matrix (P′) and added to W in order to generate a
modulated prediction of likely outcomes:

m = (W + P′)Tr. (2.9)

When more than two layers are included in the hierarchical structure of the
model, p′ may itself be modulated by the predictions of superior layers p′′,
and thus equation 2.9 would become

m = (W + M′)Tr. (2.10)

Similarly, when the predictions generated by a layer are modulated by
superior layers, the errors are calculated as the difference between the cur-
rent, modulated prediction and the observed outcome. Equation 2.8 then
becomes

e = a(o − m). (2.11)
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Equation 2.11 is used to train associative weights W within each layer of the
model; however, the error term in equation 2.2 is always used as the proxy
outcome for superior layers.

2.2.3 Response Generation. In our simulated tasks, actions could result in
correct or error feedback, which are learned as response-outcome conjunc-
tions at the lowest layer of the hierarchy. In order to generate responses, for
each candidate response, the model compares the (modulated) prediction
of correct feedback to the prediction of error feedback,

uresponse = mResponse/Correct − mResponse/Error, (2.12)

which is then used in a softmax function to determine a response:

Prob(ui) = expγ ui

∑
expγ u

, (2.13)

where γ is a gain parameter. Because the presentation of feedback to the
model is in the form of RO conjunctions, the predictions generated at the
lowest hierarchical layer contain information regarding both affectively
positive (“Correct”) and negative (“Error”) outcomes, as well as the re-
sponses that are likely to result in each. It is an assumption of the model
that behaving agents will tend to avoid negative events, even in the ab-
sence of an affectively positive alternative, and pursue positive events; thus
equation 2.12 incorporates both affective components of the prediction in
determining responses.

Each layer of the HER model contains four free parameters, plus an
additional global parameter for response selection gain. Parameters were
hand-tuned to yield acceptable performance, where “acceptable” is an ar-
bitrary, modeler-defined metric indicating that the modeler has stumbled
on a region in the parameter space for which the model appears to learn a
simulated task more quickly and reliably than was previously observed by
the modeler.

2.2.4 Flat Model. In order to assess the importance of the hierarchical
structure of the model in learning, a flat version of the model was imple-
mented. In this version of the model, the modules described above were
each connected directly to the response-outcome units, and error feedback
for all modules was the observed outcome minus the predicted outcome.
Unlike the hierarchically organized model, individual modules in the flat
model did not interact with each other except through the outcome predic-
tions generated by each module, which were summed to obtain an overall
prediction, generate model responses, and compute error. Other than these
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Table 1: Model Parameters for the 1-2AX Simulations.

Value for:

Parameter Description Equation Layer 1 Layer 2 Layer 3

α Learning rate 3 0.075 0.075 0.075
λ Eligibility trace decay 6 0.1 0.5 0.99
β Working memory update gain 5 15 15 15
Bias Bias for updating working memory 5 1 0.1 0.01
γ Response selection temperature 13 15 NA NA

Table 2: Model Parameters for the Generic Hierarchical Task.

Value for:

Parameter Description Equation Layer 1 Layer 2 Layer 3

α Learning rate 3 0.05 0.02 0.02
λ Eligibility trace decay 6 0.3 0.5 0.9
β Working memory update gain 5 12 14 14
bias Bias for updating working memory 5 0 0 0
γ Response selection temperature 13 12 NA NA

changes, all equations were identical to those described above, and param-
eters were as reported in Table 2.

2.3 Model Simulations. For all model simulations, a version of the HER
model with three layers (parameterized as indicated in Tables 1 and 2) was
used, with a total of 13 parameters.

2.3.1 Simulation 1: 1-2AX Continuous Performance Task. The AX and 1-2AX
continuous performance task (CPT) are frequently used in the study of
WM and in diagnosing behavioral and cognitive deficits related to WM
dysfunction (Carter et al., 1998; Servan-Schreiber, Cohen, & Steingard, 1996).
The 1-2AX CPT is a hierarchically organized task (see Figure 2A) in which
a subject’s response to a target cue (X or Y) is governed by both a “pattern”
cue that immediately preceded it (A or B), as well as a “context” cue (1 or
2), that indicates which pattern cue-target sequence (AX or BY) is valid at
any given time. Sequences of stimuli may be thought of as being organized
in inner and outer loops (see Figure 2B), where inner loops are composed of
two-stimulus sequences with A or B followed by X or Y, and outer loops are
the sequence of inner loops followed by the presentation of a context cue.
We simulated the HER model on a version of the 1-2AX task as described
in O’Reilly and Frank (2006) in which each outer loop consisted of one to
four inner loops and the probability of observing a valid sequence for each
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Figure 2: 1-2AX CPT.

inner loop was 0.25. There were eight inputs to the model, corresponding
to the six relevant cues in the task, as well as two distractor cues that had no
task relevance (corresponding to C and Z cues as implemented in O’Reilly &
Frank, 2006). At each cue, the model made a response to indicate whether the
current stimulus was a target. In order to perform the task correctly, target
responses should be made only at the presentation of a valid target cue;
all other cues should result in nontarget responses. Feedback to the model
indicated correct or incorrect performance. One thousand simulations of
the HER model performing the 1-2AX task were conducted for 4000 outer
loop sequences (equivalent to 160 training epochs in O’Reilly & Frank,
2006, or approximately 24,000 individual cue presentations). The model
was considered to have successfully learned the task on the first of 1000
consecutive cue presentations (approximately seven epochs) in which no
response errors were made.

2.3.2 Simulation 2: Atemporal Task Structure. In the 1-2AX CPT, task struc-
ture is partially enforced by the sequential presentation of individual cues.
On each presentation of a single task stimulus, the model may elect (or
not) to gate only the current item into WM at each layer of the model,
potentially simplifying the problem of learning to represent task structure.
Structured tasks in which information related to every hierarchical layer is
presented simultaneously (Badre et al., 2010) pose an additional problem in
that the model needs to learn in parallel (rather than serially) the mapping
of information for the entire task structure to the appropriate model layer.
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Generally, hierarchically structured tasks (either temporal or atemporal)
reported in the literature involve presentation of a compound stimulus
composed of at least two dimensions, with all dimensions being relevant
to identifying an appropriate response. Stimulus dimensions are typically
treated as categorical, even in cases in which a continuous interpretation
is possible. The orientation of an image, for example, may be continuous,
but generally only a few, well-differentiated orientations would be used in
a task, and the spatial relation between two orientations has no bearing on
the appropriate response. Accordingly, in our structured task simulations,
stimulus dimensions are treated as categorical, and the number of categories
of each dimension is manipulated to derive different structured tasks. While
compound stimuli can in some cases be treated as noncompound (Kehoe,
1986), in our simulations, values for a particular stimulus dimension are
treated as being independent.

An additional point in discussing task structure is to question what is
meant by structure in the first place. For structured tasks in which multiple
stimulus dimensions inform an eventual response, one dimension is gener-
ally regarded as signifying an abstract rule that governs how one responds
to other dimensions. In tasks with a temporal component, such as the 1-2AX
task, this relationship is partially enforced by the order in which stimulus
components are presented, with more abstract stimulus dimensions pre-
ceding concrete dimensions. In the absence of such temporal structure, it is
unclear whether and how one stimulus dimension may come to function
as a rule and another function as the concrete stimulus. One possibility
is that this relationship among stimulus dimensions is determined by the
properties of the dimensions themselves: stimulus dimensions that may
take a greater number of values relative to other stimulus dimensions may
be more or less likely to function as the rule for a given task. An alternative
possibility is that the relationship of each stimulus dimension with associ-
ated responses determines whether a particular dimension functions as a
rule or concrete cue in a structured task. In order to investigate the ability
of the model to successfully acquire structured tasks in which information
is presented without the additional benefit of temporal structure as well as
how the model learns to map stimulus dimensions to hierarchical layers,
we simulated the model on a class of generic structured tasks (see Figure 3)
in which two notional stimulus dimensions (see Figure 3A), each having
multiple possible values, were used. The number of distinct values for each
stimulus dimension was varied from two to seven, resulting in 36 (6 × 6)
distinct structured tasks. For each task, the number of possible responses
was determined by the dimension with the highest dimensionality, and
response mappings were permuted a number of times equal to the dimen-
sionality of the second stimulus (while ensuring that response mapping
permutations were nonoverlapping).

In the notional task depicted in Figure 3, each compound stimulus con-
sists of two dimensions, shape and orientation, with dimensionalities of two
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and three, respectively. This results in a task with three possible responses
and two response mappings. Additional values could be included for each
dimension of the stimulus (i.e., additional shapes, additional orientations)
to generate new hierarchical tasks. It should be noted that structured tasks
of this sort can be solved using a generic backpropagation network with
a single hidden layer (functionally similar to a single layer of the HER
model). Although such networks are not hierarchically structured, they are
able to learn hierarchical tasks through learning conjunctions of features,
represented by activity in hidden units, which can then be used to gener-
ate appropriate responses. In order to ensure that the model learned the
task using the hierarchical model architecture, and not through represent-
ing conjunctions of features in the WM representation (similar to a hidden
layer), weights from external stimuli (s) to internal representations (r) used
a one-to-one mapping rather than the fully connected mapping as in the
previous simulation. This ensures that the activity of each unit in the WM
module is unable to represent feature conjunctions and instead represents
only a single feature.

We conducted 10 “experiments” in which the model was simulated per-
forming each of these tasks for 10,000 trials, and for each experiment, 100
simulations (each corresponding to a single subject) were performed. Each
of the 10 experiments was conducted under two separate conditions: one
in which the model learned the mapping of stimulus to hierarchical model
layer autonomously and another in which each of the two stimuli were
forced into a specific mapping (e.g., dimension 1 was always stored at the
lowest hierarchical layer and dimension 2 at the second layer; see Figures 3B
and 3C). On each trial, the value of elements in the binary feature vector

Figure 3: Generic hierarchically structured task. (A) A notional structured task
in which subjects are presented with a series of oriented shapes and required
to learn appropriate responses (see Badre et al., 2010). A task is structured
if information about one dimension of the stimulus can be used to inform
how a subject ought to respond to the second dimension. (B) A bottom-heavy
hierarchical task structure. The stimulus dimension having two possible values
(diamond or ellipse) serves as a context cue informing responses to the second
stimulus dimension (orientation), which has three values. (C) A top-heavy task
structure, in which the stimulus dimension with a greater number of possible
values serves as the higher-level context cue. Note that in both structures, the
responses for each unique combination of stimulus dimension (e.g., vertical
and diamond) are identical. Hierarchically structured tasks of this sort can be
extended to an arbitrary number of dimensions. (D) A mapping in which the
task has been decomposed into two simpler tasks, a 2 × 2 and 1 × 2 task, and
in which the stimulus dimension used as the higher-level context cue in one
component is different from the dimension used as the context cue in the other
component.
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that serves as input to the model (s; see equation 2.4) corresponding to each
of the stimulus dimensions was set to 1; that is, on each trial, the model was
presented with two possible items eligible to be stored in WM, though it
was still restricted to storing only a single item in the WM module of each
hierarchical layer. To assess performance, the model was considered to have
completed learning of the structured task on the first of 1000 consecutive
trials in which no errors were committed.

2.3.3 Parameter Influence. Model parameters for both simulations were
hand-tuned to yield acceptable performance. In order to provide insight
into how the parameterization of the model contributes to its ability to
learn the tasks described above, additional simulations were carried out to
explore the performance of the model in different regions of the parameter
space. The model was simulated on the 1–2AX task while the values of
the λ and bias parameters were varied. These parameters are related to
the temporal representation of a stimulus and the decision to update WM
or maintain an item during ongoing performance, and thus the discrete
nature of the atemporal structured task is not suitable for investigating
these parameters. The values for parameters α and β, governing learning
rate and WM update gain, were manipulated for simulations in which the
model performed three variations of the structured task (2 × 2, 2 × 3, 3 × 3).
Simulations were conducted according to the previous descriptions and,
with the exception of the manipulated parameters, parameter values were
identical to those reported in Tables 1 and 2. Only one set of parameters
(e.g., the three values for alpha at each hierarchical layer) was manipulated
at a time.

3 Results

3.1 Simulation 1: 1-2AX CPT. In our first simulation, we demonstrate
the ability of the HER model to successfully solve the 1-2AX CPT. Of
the 1000 simulations conducted, the model successfully met criterion all
1000 times. On average, the number of cue presentations to criterion was
4491.6 (standard deviation 2756.2; median = 3691.5; interquartile range =
2606.5), equivalent to approximately 30 epochs in other reports (Krueger
& Dayan, 2009; O’Reilly & Frank, 2006). Notably, the model significantly
outperforms other computational models of WM, including the PBWM
and LSTM (Hochreiter & Schmidhuber, 1997) models, as well as an LSTM
model trained using a manual shaping procedure (Krueger & Dayan, 2009).
If instead we use Krueger and Dayan’s more stringent criterion, we find
the HER model fails to meet criterion 1.2% of the time, while successful
runs took an average of 4940.7 (median = 4107) cue presentations to reach
criterion (standard deviation 3465.6, interquartile range = 3274). Using the
more lenient criterion of two consecutive epochs with no errors as described
in O’Reilly and Frank (2006) yields an average time to criterion of 2902.6
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trials (approximately 19 epochs; standard deviation = 1340 trials, median =
2503 trials, interquartile range = 1426), compared to the approximately
300 epochs required by the PBWM and LSTM networks in O’Reilly and
Frank.

Although the performance of the model on the 1-2AX task exceeds that of
other models capable of learning the task, in comparison to human perfor-
mance, the HER model requires many more trials to learn the task. In thesis
work reported by Krueger (2011), human subjects were able to learn the
1-2AX task in approximately five epochs. One potential reason for this is
that humans may use the information provided by the stimulus identity—
letters and numbers—to aid in learning. Letter stimuli that fill similar func-
tional roles, such as A and B, in the task are similar to one another in the
sense of being sequentially adjacent in most alphabets. However, Krueger
additionally reported the results of an experiment with the same overall
task structure of the 1-2AX task, but in which stimuli were selected without
such a preexisting relationship. This arrangement is similar to the binary
feature vector used for representation in the HER model, in which represen-
tations corresponding with, for example, 1 and 2, are orthogonal, and thus
is a more accurate comparison of model and human performance. The HER
model was simulated on the adjusted 1-2AX task as reported in Krueger
(2011) in the same fashion as described for simulations of the more typical
1-2AX task. Using the criterion described in that thesis of approximately
90% accuracy on potential target trials (X or Y) over two epochs, we find
that the HER model meets criterion in a similar number of stimulus presen-
tations as human subjects: 13.01 epochs to sustain 90% accuracy over two
epochs compared to the 12 epochs needed by human subjects. Moreover,
while only 25% of the human subjects met criterion, the HER model met
criterion on this more difficult version of the 1-2AX task 100% of the time
over 1000 simulations. Thus, the HER model matches human-level perfor-
mance with regard to the speed with which it learns and outperforms naive
subjects in being able to consistently solve the task.

A likely reason for this increase in performance is the organization of the
model into hierarchical layers, which maps well to the innate hierarchy of
the 1-2AX task. At the lowest layer of the hierarchy, the model learns base
response rates associated with each cue and disregarding any additional
information that may be supplied by higher-order cues. At the highest
layer of the hierarchy, the WM component of the model learns to store
and maintain context cues (1 and 2) over multiple inner loop sequences
and updates only when a new context cue is presented. At the middle
layer, WM updates following the presentation of an inner loop cue (A or
B) and maintains the representation only until after the following cue has
been presented. In fMRI studies using the 1-2AX task, this pattern of WM
updating has been observed in human dlPFC (Nee & Brown, 2013).

Additionally, the model displays behavior similar to that of humans
learning complex hierarchical tasks in that rather than following a smooth
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trajectory, learning curves are observed to plateau at points before increas-
ing again (see Figures 4A and 4B). Error rates in the model are observed to
plateau as discrete components of the task are acquired. Following learning
of the base response rates by the lowest layer (see Figure 4C), a second inter-
val occurs during which the model learns the relationship of inner loop cues
and target cues (see Figure 4D). Following acquisition of this relationship,
another interval follows during which the model learns the relationship of
context cues to inner loops sequences (see Figure 4E). This pattern of task
acquisition is similar to behavioral shaping paradigms in which concrete
stimulus-response relationships are trained before more abstract relation-
ships, facilitating acquisition of a task relative to attempting to learn the
complete task from the beginning. In this sense, the HER model can be
considered to shape its own behavior. It is important to note that although
the model learned to store more abstract cues at the highest hierarchical
layer and more concrete cues at the lowest level of the model, this is an
emergent rather than a prespecified property of the model. Task cues were
eligible to be stored in any layer of the hierarchy when presented to the
model.

The distinct learning periods observed in the model’s behavior corre-
spond to the development of weights in the model (see Figure 5). After
500 trials (see Figure 5, left panels), weights related to predicting action-
outcome conjunctions in the first hierarchical layer begin to converge on
the base response rates, at which point the model is incapable of improving
its performance without the involvement of additional layers. Following
this period, distinct patterns of errors generated by the first layer are ob-
served by the second layer (see Figure 5, center panels). Weights in this
layer reflect the association of low-level context cues A and B with errors
observed during presentation of the X and Y cues, indicating that a poten-
tial target sequence has been observed. Finally, the third layer of the model
learns the association between high-level context cues 1 and 2 with the er-
rors generated by the second layer, after which the model has solved the
task and performance is perfect (see Figure 5, right panels).

Figure 6 (see also the supplementary material for an extended example)
depicts the top-down modulation of predictions in layer 1 by predictions
in layer 2. When a low-level context cue (e.g., A in Figure 6, upper left
panels) is stored in WM at layer 2, predictions associated with that cue are
elicited. In the example depicted, the model predicts a positive error for
a Target/Correct response/outcome and a negative error for NonTarget/
Correct if an X is subsequently observed, while also predicting a negative
error for a Target/Correct response and a positive error for a NonTarget/
Correct response/outcome if a Y is subsequently observed. Note that since
the model has solved the task, predictions regarding Error outcomes are
near 0. If an X is subsequently observed (see Figure 6, lower left), layer 1
of the model weakly predicts both Target/Correct and NonTarget/Correct
outcomes. Without additional contextualization, these predictions reflect
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Figure 4: Behavioral performance. The HER model learns to perform the 1-2AX
CPT quickly and consistently. (A) Percent correct trials for 1000 simulations of
the HER model on the 1-2AX task. Values reflect the running average for a
moving 500 trial window. (B) Percent correct trials for a single simulation of
the HER model, again using a moving 500 trial window. Behavioral markers
of hierarchical learning are apparent in the performance plateaus observable
at different learning stages. Panels C–E display the same performance data as
panel B but restricted to (C) early (1–250 trials), (D) intermediate (250–1000),
and (E) late (1250–2500) learning periods. (F) Performance of the HER model in
relation to simulations of the PBWM and LSTM models (reported in O’Reilly
& Frank, 2006; values are approximate) using the criterion of two consecutive
epochs without error. (G) Performance of the HER model in relation to simula-
tions of a behaviorally shaped and unshaped LSTM model (Krueger & Dayan,
2009) using the criterion of no more than five errors in 30 epochs.
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Figure 5: Associative weight development. The development of weights be-
tween working memory representations and outcome prediction units (see
equation 2.1) in the HER model during different learning stages. Brackets along
the x-axis indicate weights associated with working memory representations.
Note that at each layer of the hierarchy, the number of weights associated
with each working memory representation increases geometrically (see equa-
tion 2.7). In the first 500 trials (left column), weights in layer 1 (bottom row)
reflect base response rates for items in WM—observations of nontarget stimuli
in the task are strongly associated with nontarget/correct response-outcome
conjunctions, while potential target stimuli (X and Y) are partially associated
with nontarget/error RO conjunctions. During intermediate stages, weights in
layer 2 (middle row) associated with WM representations of A and B develop,
reflecting the increased probability of making target responses to X and Y, re-
spectively. Finally, during the final stage of learning, weights in layer 3 (top
row) associated with the high-level stimuli 1 and 2 develop, indicating the
model should respond only to target sequences (AX and BY) in the appropriate
contexts.

the base rates of those response/outcome conjunctions conditioned on X.
The error predictions in layer 2 are used to modulate associative weights in
layer 1 (see Figure 6, center), increasing the prediction of a Target/Correct
response/outcome and decreasing the prediction of a NonTarget/Correct
response/outcome. Following modulation (see Figure 6, lower right), the
prediction of a Target/Correct response/outcome is near unity. Note that
the above description assumes the appropriate high-level context variable
(1) is stored in layer 3 of the hierarchy.
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Figure 6: Modulation of prediction weights. Top-down modulation of lower
layers is illustrated using a simplified version of the 1-2AX task (the AX CPT).
Following learning of the task, the model reliably stores context variables A
and B in the second model layer, while the less abstract variables X and Y are
in the lowest hierarchical layer. The case of the sequence AX is represented in
the figure. Upon the presentation of an X, WM representations in layer 1 are
updated, resulting in the predictions indicated in the bottom left panel. Since X is
not always associated with target responses (as in the case of a BX sequence), the
model predicts both Target/Correct and NonTarget/Correct outcomes. In layer
2, the context variable A is maintained in WM following presentation of the X
stimulus. Associated with the WM representation of A are predictions regarding
possible sequences: if A is followed by an X, a Target/Correct outcome is more
likely (indicated in the figure by the circled 1), while a NonTarget/Correct
outcome is less likely (2). Similarly, if A is followed by a Y, the Target/Correct
response (3) is less likely while the NonTarget/Correct response is more likely.
Similar patterns of predictions exist, but are not depicted, for instances in which
the model maintains B in the second layer. Since X was presented following A
in this case, only the layer 2 predictions involving X (middle panel) have any
effect on the lower layer; specifically, predictions at layer 2 additively modulate
associative weights between WM representations and predictions at layer 2.
Following modulation of layer 1 by layer 2, the final prediction indicated by
layer 1 is a near certain estimation of observing a Target/Correct outcome.
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Weights in the WM gating mechanism (see Figure 7A) follow a similar
time course. Because of the bias term in equation 2.5, the lowest layer of
the hierarchy updates the contents of WM following the presentation of
each stimulus. Although the gating mechanism is identical to higher layers,
model performance depends on updating this layer on every trial. The BG
weights at the second layer of the hierarchy learn to preferentially store the
low-level context cues. It does this by learning when one of the potential
target cues is presented; the value of maintaining a low-level context cue
(i.e., how consistently it is associated with a particular error pattern) is
greater than for maintaining the target cue in WM. Finally, BG weights in
the third hierarchical layer learn to preferentially store high-level context
cues. This pattern of weights supports the adaptive updating of WM in the
model (see Figure 7B): when a high-level context cue is presented (indicated
by the gray bar), it is selectively gated into WM at layer 3 and maintained
until a different high-level context cue is presented (maintenance activation
indicated by black boxes). Similarly, low-level context cues (A and B) are
preferentially stored in layer 2. In contrast to the third hierarchical layer,
however, low-level context cues are maintained for only a single stimulus
presentation after they are stored in WM—long enough to contextualize
the model’s response to the potential target cues (X and Y), but not long
enough to interfere with future responses. This adaptive gating develops
over the course of training (see Figure 7C). Initially, when presented with a
potential target cue, all model layers tend to represent the cue in WM. As
the model develops, layer 2 learns to preferentially store low-level context
cues in WM, while layer 3 learns to store high-level context cues. This
pattern is consistent fMRI data from humans performing the 1-2AX CPT
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(see Figure 7D; Nee & Brown, 2013), in which it is observed that activity
in rostral regions of dlPFC is associated with high-level context updates,
while more caudal regions are associated with low-level context updates.

3.2 Simulation 2: Atemporal Task Structure. As noted above, temporal
structure may provide a valuable cue to learning hierarchically organized
tasks. However, even without this cue, humans are able to learn structured

Figure 7: WM gating. (A) Weights (averaged over 1000 simulations) in the
WM gating mechanism reflect the utility of maintaining versus updating WM
representations following learning. At the lowest hierarchical layer, weights
in the gating mechanism are confined primarily to the diagonal, indicating
that the mechanism tends to update WM on each trial. Weights associated
with the presentation of X and Y stimuli are strongly negative, indicating the
mechanism’s tendency to immediately “forget” those stimuli when any other
stimulus is present. However, the model still stores the two variables in WM at
layer 1 despite the strong negative weights due to the high bias for updating
at layer 1. Weights in layer 2 reflect the tendency for the model to maintain
representations of low-level context variables A and B rather than gating in X
and Y representations. This is indicated by the positive off-diagonal weights
associating X and Y inputs with A and B outputs. Finally, weights in layer 3
strongly favor maintenance of high-level context variables. The presentation
of any stimulus other than a 1 or 2 is positively associated with maintenance
of the WM representations for 1 and 2. (B) WM contents at layer 3 (top two
rows) and two (bottom 2 rows). Gray vertical lines indicate the presentation of
high- and low-level context cues, while solid black lines indicate the activity
of corresponding WM units in the model. Following the presentation of high-
level cues 1 and 2, WM units in layer 3 representing those cues become active
and maintain their activity over extended durations until a new high-level
context cue is presented. WM units in layer 2 preferentially maintain low-level
context cues A and B and tend to maintain those items in WM for 1 model
iteration—long enough to modulate responses to the immediately following
X or Y cues. (C) Contents of WM over the course of learning in the first 1500
potential target trials (i.e., trials in which an X or Y is presented). The likelihood
of storing items in WM at layer 2 and 3 changes as components of the task are
learned. Initially all three layers represent potential target cues X and Y. After
base response rates are learned, layers 2 and 3 represent A and B. Finally, at late
stages of learning, layer 3 maintains only high-level context cues 1 and 2 in WM.
(D) Dissociable regions of dlPFC are associated with updating in the 1-2AX
task. Activity in rostral dlPFC (upper row) is observed following presentations
of high-level context variables (1 and 2), while activity in caudal dlPFC (lower
row) is observed following presentation of low-level context variables A and
B. This organization is reflected in the mapping learned by the HER model
performing the 1-2AX task. (Figure 7D reprinted with permission of Oxford
University Press: Cerebral Cortex, Nee & Brown, 2013.)
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Figure 8: Behavioral performance. Plots show the probability of a correct re-
sponse on the first 5000 trials (averaged over a moving 200 trial window) for
various versions of a generic hierarchically structured task in which the number
of possible values of 1 stimulus dimension is manipulated. Each line represents
a single simulated subject, and for each version of the task, 1000 subjects were
simulated. Simulations that failed to meet criterion are omitted. As the number
of possible values for the manipulated stimulus dimension increases, so too
does learning time.

tasks (Badre et al., 2010). Similarly, the HER model is able to learn to perform
structured tasks in which all information is presented simultaneously (see
Figure 8) and displays behavioral markers associated with human learning
for the structured task, as discussed above. Specifically, in the course of
learning, response accuracy in humans is observed to follow a pattern of
rapid increase in performance followed by a plateau as components of the
task are acquired.

Of particular interest is how the HER model learns to solve the structured
tasks: How are the features used in structured tasks mapped to hierarchical
layers in the model, and how might this mapping influence learning and
behavior? Although in discussing structured tasks, we refer to two differ-
ent stimulus dimensions, each having multiple values, this information is
not hardwired in the model. Rather, values for each stimulus dimension
presented on each trial are arbitrarily mapped to a binary feature vector,
which constitutes the only information (disregarding feedback) available
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Figure 9: Emergent categorization in the WM gating mechanism. Learned
weights in the WM gating mechanism reflect task structure. Although input
to the model consists only of a binary feature vector containing no information
about how low-level feature values relate to one another, values belonging to
the same stimulus dimension are represented in the same layer of the HER
model.

to the model. Given this, there may be multiple ways in which a hierar-
chical model may solve a structured task. For example, a 2 × 3 task (e.g.,
see Figure 3) may be decomposed into two component tasks: a 2 × 2 task,
and a 1 × 2 task (see Figure 3D). Some features nominally assigned to one
stimulus dimension may map to the lowest hierarchical layer, while other
features belonging to the same stimulus dimension may map to higher lay-
ers. Analysis of learned weights in the WM gating mechanism (see Figure 9),
however, reveals that when the model successfully learns a structured task,
all features for a given stimulus dimension are consistently mapped to the
same hierarchical layer. This mapping constitutes a categorization of unla-
beled features into higher-order classes that emerges through the interaction
of the model with a structured task, suggesting a mechanism by which rules
and task sets, generally thought to be represented within dlPFC, may be
acquired through experience.

Moreover, depending on the structure of the task performed by the
model, the mapping of stimulus dimensions to hierarchical model lay-
ers follows a characteristic pattern. For cases in which the dimensionality
of each stimulus dimension is equal, mapping is random, each stimulus
dimension is equally likely to be mapped to either the first or second
layer of the hierarchy. However, as the dimensionality of one stimulus
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Figure 10: Bottom-heavy mapping. The HER model’s solutions to generic hi-
erarchically structured tasks tend to favor a mapping in which the stimulus
dimension with greater mutual information with the responses is represented
at the lowest layer of the model. There is generally a strong positive correlation
between the mutual information and a greater number of possible values in a
given stimulus dimension (i.e., dimensionality), so here we plot the stimulus
dimensionality as a proxy for mutual information. As the asymmetry between
the dimensionality of the two stimuli increases, so too does the tendency of the
model to solve tasks in a bottom-heavy fashion (i.e., higher mutual information
dimensions map to lower layers). Vertical lines reflect standard deviation. Data
are omitted for conditions in which the model failed to meet criterion at all over
1000 simulations.

dimension increases relative to that of the other, the model preferentially
maps the higher-dimensional stimulus to the lowest hierarchical layer (see
Figure 10). This is not due to the increased dimensionality of the stimulus
dimension per se. As we will see, the major determinant is that stimulus
dimensions that are better able to predict and reduce uncertainty about the
response (as quantified by mutual information) will be mapped to lower
layers (see Figure 13).

A perhaps unsurprising result is that the ability of the model to learn a
structured task decreases as the dimensionality of each stimulus dimension
increases, and for those models that are able to learn the task, the number
of trials to criterion was higher. The model was most reliable and learned
most rapidly for the simplest structured task (2 × 2), and performance in
both metrics decreased for increases in both dimensions (see Figures 11A
and 11B). One rather obvious explanation for the difference in learning time



Hierarchical Error Representation 2383

is that as the dimensionality of each stimulus dimension increases, so too
does the number of conjunctions the model must learn about. In a 2 × 2
task, a particular combination of stimuli dimensions will be seen much
more frequently than in a 7 × 7 task. However, the pattern holds when the
frequency with which each conjunction is observed is taken into account
(see Figure 11B): as the dimensionality of each feature increases, the number
of times the model must observe each conjunction before reaching criterion
increases.

Moreover, the number of unique conjunctions for a given task structure
is not the only factor influencing learning rate. Although the model tends
to solve tasks by mapping the highest-dimensional stimulus to the lowest
hierarchical layer, it is also possible for structured tasks to be accomplished
by mapping the stimulus with the lowest dimensionality to the lowest
layer (see Figure 3C). For simulations in which the model learns to map
the stimulus with the higher dimensionality to the lowest model layer (a
bottom-heavy representation), the number of trials to criterion is lower
than when the model learns the task by mapping the stimulus with lower
dimensionality to the lowest model layer (top-heavy). A two-way ANOVA
was conducted using the number of trials to criterion in structured tasks in
which the dimensionality of one of the stimulus dimensions was 2 (as these
tasks were most reliably learned by the model) and reveals a significant
effect of the dimensionality of the second dimension (F(4,10) = 827.55,
p < 0.001) as well as the preferred mapping (F(1,10) = 169.76, p < 0.001).

One possible explanation for this difference is that for simulations in
which a top-heavy representation is learned, the model may initially map
task stimuli in the preferred bottom-heavy fashion, and subsequent adop-
tion of the top-heavy mapping may be driven by random variation between
simulations. In order to assess whether differences in trials to criterion are
influenced by such variation, we conducted a second simulation in which
the mapping of task stimuli to hierarchical layer was fixed: one stimulus
dimension was always stored in WM at the same layer regardless of its
dimensionality relative to the other stimulus. By fixing mappings in this
manner, effects on learning related to the noisy, biased selection of stimulus
mappings can be eliminated.

Even when controlling for this possible cause, however, the number of
trials to criterion for top-heavy mappings remains higher than for bottom-
heavy mappings (see Figure 12). For a given structured task in which the
number of unique conjunctions was identical, the number of trials to crite-
rion was higher when the stimulus with higher dimensionality was fixed
at a superior hierarchical layer. Inspection of learned model weights (see
Figure 13A) linking stimulus representations to outcome predictions sug-
gests that prolonged learning periods in the top-heavy condition are due
to increased ambiguity in the required responses. As noted in the 1-2AX
simulations, the lowest hierarchical layer learns baseline response-outcome
likelihoods. Since the total number of responses in the generic structured
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Figure 11: Dimensionality and performance. (A) Proportion of simulations (out
of 1000 total) reaching criterion (vertical lines reflect standard deviation) in each
condition. The HER model reliably learns hierarchically structured tasks pro-
vided the dimensionality of either stimulus is relatively low. The probability of
reaching criterion drops precipitously when the dimensionality of any stimulus
is five or greater. (B) Concurrently, the number of presentations of each unique
stimulus conjunction required for the model to reach criterion increases with the
overall dimensionality of both features (data omitted for conditions in which
the model never met criterion).
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Figure 12: Fixed mapping. Number of presentations for each unique stimulus
conjunction needed to reach criterion when the mapping of stimuli to hierarchi-
cal layers is fixed (i.e., model inputs associated with stimulus 1 are automatically
gated into WM at layer 2, while inputs associated with stimulus 2 are gated into
WM at layer 1). Although the model reliably learns the hierarchically struc-
tured task under fixed mapping conditions, the number of trials needed to meet
criterion increases drastically when a top-heavy mapping is enforced.

task depends on the stimulus with the highest dimensionality, each of the
stimulus dimensions for the lower-dimensional stimulus will be associated
with all possible responses when it is mapped to the lowest hierarchical
layer. Conversely, when the higher-dimensional stimulus is mapped to the
lowest hierarchical layer, the number of responses for each dimension of
that stimulus will be associated only with a number of responses equal
to the dimensionality of the lower-dimensional stimulus. In the top-heavy
condition, then, learning is protracted due to the less certain association of
stimulus with response at the lowest hierarchical layer, reflected by larger
average negative error components, indicating the failure of predicted out-
comes to occur.

This analysis suggests a more general principle underlying the mapping
of stimulus dimensions to hierarchical layers. Specifically, stimulus dimen-
sions that reduce uncertainty about responses to a greater degree tend to
be mapped to the lowest hierarchical layer, akin to the results of a principal
component analysis, where the lowest layer in the hierarchy captures fea-
tures analogous to the first principal component. Also, the degree to which
a particular stimulus dimension reduces response uncertainty need not
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Figure 13: Weight development and uncertainty. (A) Under fixed mapping con-
ditions, associative weights at layer 1 from WM representations to outcome pre-
dictions show qualitative differences in strength, with weights in the top-heavy
condition (upper panels) reaching a lower asymptotic strength, while weights in
the bottom-heavy condition (lower panels) reach a higher asymptotic strength.
(B) The type of mapping preferred by the HER model correlates with the differ-
ence in mutual information between feature dimensions and responses. When
one feature dimension reduces uncertainty regarding the response to a greater
degree than the other, it is more likely to be mapped to the lowest hierarchical
layer. (C) The probability of failing to solve a given structured task decreases
with increases in response entropy. As the number of possible responses in-
creases, the likelihood that the model will be able to solve the task decreases.
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necessarily correspond to the number of values that stimulus dimension
may take. For example, one may imagine that in the notional structured
task depicted in Figure 3B, the response mappings may be arranged such
that all stimuli in the shape of a diamond are associated with a response of
1, while ellipses are associated with a response of 2 regardless of the orien-
tation. In this case, the stimulus dimension that most reduces uncertainty
is the shape and not the orientation (which, in this example, contains no
information regarding the appropriate response). If reduction of response
uncertainty is indeed the principle determining the order in which stimulus
dimensions are mapped to hierarchical layers in the model, one would ex-
pect that the shape dimension would be mapped to the lowest hierarchical
layer.

To investigate whether uncertainty reduction could explain how the
model maps stimulus dimensions to model layers, we undertook an ad-
ditional round of simulations using the generic structured task. Simula-
tions were run using structured tasks with two values for each stimulus
dimension (2 × 2) up to tasks with five values (5 × 5) for each stimulus
dimension as in the previous simulations. Additionally, the number of pos-
sible responses was varied for each structured task, from a minimum of
2 responses to a maximum of 10 responses. Response mappings for each
response condition were selected to maximize the conditional entropy of
the response with each of the stimulus dimensions.

The degree to which uncertainty regarding responses is reduced due to
knowledge about a particular stimulus dimension can be quantified by the
mutual information of the two, which is calculated as the entropy of the
response minus the conditional entropy of the response given the stimulus
dimension. For each condition, the mutual information between the cor-
rect response and each of the feature dimensions was calculated, and 1000
simulations of the model were conducted. Simulations of the model demon-
strate that the difference in mutual information between the two stimulus
dimensions predicts the mapping of stimulus dimensions to hierarchical
layers in the model (r = 0.75, p < 0.001; see Figure 13B). Thus the tendency
of the model to prefer a bottom-heavy mapping in our initial simulations is
not a direct consequence of the number of dimensions of the stimulus but
is due to the ability of higher-dimensional features to reduce uncertainty
regarding the correct response to a greater degree than lower-dimensional
features. Although dimensionality is not directly responsible for the map-
ping learned by the model, in general the mutual information of a stimulus
dimension with the response for a given structured task will be greater for
stimulus dimensions that can take a larger number of values than another
dimension. For the simulations conducted, the difference in dimensionality
between stimulus dimensions (larger minus smaller) is correlated with the
difference in mutual information (r = 0.81, p < 0.001).

Overall, the dimensionality of each of the stimulus dimensions does
not appear to influence the ability of the model to solve the structured
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task per se, despite the strong correlation. Rather, the amount of response
uncertainty (entropy) predicts whether the model will be able to solve a
given structured task. As the number of responses increases, regardless of
increases in the dimensionality of features, the probability that the model
will fail to solve the task increases (see Figure 13C). Visual inspection of
the data suggests this relationship may be captured by a logistic function;
consequently, a two-parameter logistic function fit to the probability of
failure data, with response entropy as the independent variable, yields an
R2 value of 0.85, while logistic fits in which the independent variable is the
entropy of each of the feature dimensions provided substantially worse fits
(R2 = 0.093 and 0.16).

3.2.1 Simulation: Flat Model. Additional simulations were planned to
investigate the importance of the hierarchical organization of the model
on learning by using a flattened version of the model. In this version,
the modules independently contributed to the overall outcome prediction
and response generation. Initial simulations of the flat model showed that
for the simplest structured task of 2 × 2 stimulus dimensions, the model
failed to perform above chance after 10,000 trials. Simulations on the 2 × 3,
2 × 4, and 2 × 5 tasks showed a slight improvement above chance during
training, and this improvement corresponded to learning the association
of the higher-dimensional feature with the correct responses unique to that
feature. In order to rule out the possibility that the failure of the flat model
to learn the task was caused by dysfunction of the WM gating mechanism,
each stimulus dimension was manually mapped to one of the modules.
Although learning was more rapid in this case, the model still failed to
completely solve the structured task after 10,000 trials, and performance
asymptotes at the base response rates of the higher-dimension feature. The
inability of the flat model to solve the structured task highlights the necessity
of learning about feature conjunctions in order to perform the structured
task. In the HER model, feature conjunctions are learned by exploiting the
hierarchical organization of the model. However, this is not the only manner
in which feature conjunctions can be formed. As noted above, a generic
backpropagation network with at least one hidden layer is able to solve the
structured tasks described in this manuscript, as well as the more complex
task reported in Badre et al. (2010, unpublished simulations), where the
activity of hidden units reflects learned conjunctions of features.

3.2.2 Simulation: Parameter Influence. Additional simulations of the HER
model were undertaken to investigate the behavior of the model under
alternative parameterizations. In order to investigate the influence of pa-
rameters related to temporal aspects of the model—eligibility traces (see
equation 2.6) and WM update during ongoing performance (see equation
2.5), the λ and bias parameters were manipulated while the model per-
formed the 1-2AX CPT. Changes to λ suggest a dual role in supporting
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Table 3: Influence of Trace Parameter λ.

Task .1 / .1 / .1 .5 / .5 / .5 .99 / .99 / .99 .1 / .5 / .99 .99 / .5 / .1

1-2AX NA NA 5935.2 / 6088 / 0.99 4227.3 / 2808 / 1 NA

Notes: Top row: Parameter values for layer 1/2/3. Cells: Mean trials to criterion/
interquartile range/proportion of simulations meeting criterion.

Table 4: Influence of Bias Parameter.

Task 1 / 1 / 1 .1 / .1 / .1 .01 / .01 / .01 .01 / .1 / 1

1-2AX NA 10926 / 11270 / 0.88 9159.9 / 12060 / 0.72 NA

Notes: Top row: Parameter values for layer 1/2/3. Cells: Mean trials to criterion/
interquartile range/proportion of simulations meeting criterion.

learning in the model (see Table 3). First, simulations in which the value of
λ was reduced specifically for the third layer of the hierarchy failed to reach
criterion (0 successes out of 100 simulations), while simulations for which
the value of lambda was maintained at the hand-tuned value at the third
layer met criterion 99 and 100 times out of 100 simulations. This suggests
that the ability to solve the 1-2AX task critically depends on the model’s
ability to maintain sufficiently strong trace activity in order to support learn-
ing in the WM gating mechanism for temporally distant stimuli. Second,
learning of the task was impaired when the value of λ was increased for the
lowest hierarchical layer. Although the model successfully acquired the task
for the condition in which λ was set to 0.99 for all layers, the time required
to do so was significantly prolonged (t(198) = 2.88, p = 0.0043), suggesting
that learning appropriate responses to immediate stimuli at the first hierar-
chical layer may be impaired by the presence of information irrelevant to
current task demands.

Similarly, manipulation of the bias parameter for WM updating (see
equation 2.5) suggests that maintaining an item in WM for extended dura-
tions, especially at the top layer of the hierarchy, is critical to the model’s
ability to solve the 1-2AX (see Table 4). For simulations in which the bias
was set to 1 (indicating a tendency to update WM with the current stim-
ulus over maintaining the current contents of WM) at the top hierarchical
layer, the model failed to meet criterion on any simulation. Conversely, the
model met criterion 88 and 72 times out of 100 when the bias parameter
for all layers was lowered to 0.1 and 0.01, respectively. Again, however, the
time needed for these simulations to reach criterion suggests a dual role for
the parameter. For these simulations, the model required on average 10,926
(bias = 0.1) and 9159.9 (bias = 0.01) trials to reach criterion, significantly dif-
ferent (t(186) = 9.56, p < 0.001; t(170) = 6.99, p < 0.001, respectively) from
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Table 5: Influence of Learning Parameter.

Task .01 / .05 / .1 .1 / .05 / .01 .01 / .01 / .01 .1 / .1 / .1

2 × 2 251.44 / 88.5 / 1 722.55 / 252 / 0.84 337.66 / 136 / 1 1351.2 / 0 / 0.2
2 × 3 407.49 / 194.5 / 1 1816.4 / 0 / 0.05 869.79 / 638 / 0.96 NA
3 × 3 580.84 / 248.5 / 0.99 5739 / 0 / 0.01 932.74 / 328.5 / 1 NA

Notes: Top row: Parameter values for layer 1/2/3. Cells: Mean trials to criterion/
interquartile range/proportion of simulations meeting criterion.

the trials required by the hand-tuned model in which the lowest layer of the
hierarchy tended to update WM frequently (bias = 1) while the top layer of
the hierarchy was less biased to do so (bias = 0.01). These results suggest
that the hand-tuned parameterization in Table 1 balances the need to main-
tain information over extended periods of time in order versus updating
information in order to meet rapidly changing immediate task demands.

The influence of the learning rate parameter α and the gain parame-
ter γ for working memory updating were explored using three versions
of the structured task: 2 × 2, 2 × 3, and 3 × 3. Manipulation of the learn-
ing rate suggests that the ability of the model to learn the task depends
on its ability to develop stable representations at the lowest hierarchical
level. For all versions of the task, the model was able to meet criterion only
for simulations in which the learning rate for the lowest level was low.
Simulations in which the learning rate was low across all hierarchical lev-
els (α = 0.01) produced results comparable to those from the hand-tuned
model parameterization (summarized in Table 5). Interestingly, increases
in α at successively higher hierarchical layers produced overall better per-
formance than the hand-tuned parameterization (see Table 5, first column),
especially as the number of possible conjunctions increases (e.g., in the 3 × 3
task, the mean number of trials to criterion is significantly lower than for
the hand-tuned parameterization (t(1065) = −5.83, p < 0.001)). In contrast,
as the learning rate in lower hierarchical layers increased, performance be-
came qualitatively worse, suggesting that learning in the model depends
partially on the stability of learned weights in lower hierarchical levels.

Finally, manipulations of the gain parameter, which governs the deci-
siveness of the WM gating mechanism in choosing between two potential
items to store in WM, showed no obvious differences in performance on the
structured task (see Table 6). The number of trials needed for the model to
meet criterion was comparable across all manipulations to the hand-tuned
parameterization. One possible reason no differences were observed is that
the structured task simulations did not involve a substantial temporal com-
ponent: the model had to choose between storing each of the two features,
but each trial was independent of the last (i.e., the model did not have to
maintain information over trials in order to successfully perform the task).
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Table 6: Influence of Gain Parameter γ .

Task 5 / 5 / 5 10 / 10 / 10 20 / 20 / 20 5 / 10 / 20 20 / 10 / 5

2 × 2 214.8 / 212.77 / 242.26 / 224.9 / 214.2 /
66 / 76 / 88 / 82.5 / 66.5 /

1 1 1 1 0.99
2 × 3 519.9 / 520.71 / 462.4 / 430.37 / 429.99 /

180 / 218.5 / 121.5 / 130 / 154.5 /
1 1 0.99 1 0.99

3 × 3 1015.2 / 846.7 / 984.8 / 814.98 / 1065.8 /
376.5 / 336 / 399.5 / 310 / 476.5 /

0.98 0.97 0.97 1 0.98
1-2AX 18,204 / 5763.9 / 4124 / 4616.2 / 12,560 /

18,064/ 2705.5/ 3358.5 / 2717 / 5717 /
0.45 1 1 0.99 0.94

Notes: Top row: Parameter values for layer 1/2/3. Cells: Mean trials to criterion/
interquartile range/proportion of simulations meeting criterion.

In order to explore the influence of temporal contingencies in conjunction
with manipulation of the bias parameter, the model was simulated on the
1-2AX task using the parameters given in Table 6. Here we see that the
value of the gain parameter has a substantial effect on model performance
specifically at the top layer of the hierarchy. In simulations in which the gain
parameter was high, model performance was comparable to the hand-tuned
parameters, while performance decreased as the gain parameter decreased.
These results are similar to those observed in the bias parameter inasmuch
as a low-gain parameter corresponds with a less deterministic choice to
store (or maintain) an item in WM, while a high-bias parameter indicates a
preference for storing new items in WM over potentially more appropriate
items already represented.

While exploration of the parameter space indicates that especially in
the case of the structured task simulations, the HER model is fairly robust
to parameter changes, questions may remain regarding the ability of the
model to solve both the 1-2AX task and the structured tasks with a single
parameter set. As noted above, parameters for each task were chosen based
on how quickly and consistently the model was able to learn each task, and
so the parameterization for one task may not be suitable for performing
the other task. In particular, bias values used for the structured task sim-
ulations are set to 0, reflecting our intuition that for the structured task,
WM would be updated at each layer on each trial, since information from
previous trials has no bearing on a current trial in that task. In order to
demonstrate the ability of the model to perform multiple tasks with a sin-
gle parameterization, the initial round of structured task simulations was
rerun using the parameters from Table 1. Detailed results are included in
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supplementary material; generally performance of the model is comparable
to the hand-tuned parameterization given in Table 2.

4 Discussion

In this letter, we have described a new computational model of ACC/mPFC
and dlPFC building on a previous model of mPFC, and specifying how a
multidimensional error signal generated by mPFC may be used to train
representations of expected error in order to support behavior. Simulations
of the model demonstrate its ability to rapidly learn complex cognitive tasks
that involve maintaining information over extended periods of time and to
discover abstract rules that govern responses.

A central feature of the model is the ability to represent tasks as having
hierarchical structure. In principle, though, our tasks could be represented
as flat tasks, in which all possible combinations of conditions collectively
form a (flat) basis for responding. In that case, the tasks could be solved
in principle without a hierarchical representation. There are two reasons
for representing the tasks as having hierarchical structure. First, although
animals can treat compound stimuli of the sort used in structured tasks as
being single stimuli (Kehoe,1986), a condition necessary to form the basis of
a flat task, it is not obvious that humans would do so for arbitrary compound
stimuli, particularly when the dimensions of the compound stimuli are not
related to one another except through their involvement in a structured
task. Second, recent work suggests that humans spontaneously attempt to
represent tasks with a hierarchical rather than flat structure, even when a
hierarchical structure is unnecessary (Collins & Frank, 2013).

4.1 Mapping the Model to Brain Regions. The HER model was devel-
oped with the intent of accounting for the complementary roles of mPFC
and dlPFC in cognitive control. As noted in section 1, the frequently ob-
served coactivation of these regions implies some degree of functional
overlap, and this is reflected in the organization of the model, in which
task-related stimuli produce predictions, which then modulate predictions
generated at lower hierarchical layers, following which errors are calculated
and used to drive learning at higher hierarchical layers. Thus, both regions
can be regarded as engaging in both prediction and error processing, mak-
ing it somewhat unclear what unique role the HER model ascribes to mPFC
and dlPFC.

The distinction between the two regions suggested by the model is most
apparent at the highest hierarchical layer. In the 1-2AX task, the third layer
learns to preferentially store high-level context variables 1 and 2. These
variables are associated with errors generated by the immediately inferior
layer (see Figure 5, top panels). Critically, the error predictions learned by
the top layer inform the predictions of lower levels for events that may or
may not happen. When the model stores the high-level context variable 1
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at the top layer, the predictions generated at that layer increase the model’s
estimate of the probability of a target response should the sequence A-X be
observed, while decreasing the estimate of target response probability for
the sequence B-Y. When these predictions are elicited following the storage
in WM of the variable 1, either of these events is possible (as well as B-X and
A-Y sequences), but neither has occurred. Following the presentation of the
low-level context variable (A, as an example), which is stored in the second
hierarchical layer, only predictions generated at the third layer relating to
inner-loop sequences beginning with A are relevant. However, since it is
possible in the 1-2AX task to observe multiple inner-loop sequences follow-
ing the presentation of a high-level context variable, predictions regarding
sequences beginning with B need to persist until the next presentation of a
high-level context variable, even though they may not be needed given the
current low-level context variable.

In the HER model, the division of labor between maintaining predictions
of all possible events that may be observed versus applying a currently
valid set of predictions is assigned to dlPFC and mPFC, respectively (see
Figure 1C and 1D). Thus, when the high-level context variable 1 is pre-
sented, predictions regarding possible inner-loop sequences are presumed
to be elicited and maintained in rostral dlPFC, while at the presentation of
the first stimulus in an inner-loop sequence, rostral mPFC regions apply
those predictions that are currently valid to more caudal PFC regions. Sim-
ilarly, at the presentation of the lower-level context cue, A, predictions re-
garding potential target presentations are elicited and maintained in caudal
dlPFC, modulated by predictions selected by rostral mPFC (but maintained
in rostral dlPFC).

This distinction is somewhat obfuscated by the manner in which top-
down modulation is implemented in the model. According to equations 2.9
and 2.10, modulation of predictions at a given layer by the predictions gen-
erated by the immediately superior layer is tonically applied. All weights
in the weight matrix W are adjusted regardless of whether the stimulus
associated with those weights is currently stored in WM. Although weights
associated with stimuli not stored in WM are modulated, they have no in-
fluence on the predictions generated by the layer being modulated. Only
the subset of top-down predictions corresponding to weights connected
to the currently active WM representation has an impact on predictions;
thus, the selection carried out by mPFC in the model is implicit rather than
explicit.

4.2 Relationship with Known Anatomy. The HER model proposes a
number of mechanisms regarding the interaction of regions of the brain
which. While promising in that they combine to produce a model capable
of performing complicated tasks, the exact mapping of model components
to brain structures remains open to question.
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One such question is the role of mPFC in driving learning of working
memory updating. In the model, error signals generated by the mPFC are
used to train weights that govern how and when a stimulus may be stored
in working memory. Although a role for BG in WM updating has been pro-
posed previously (O’Reilly & Frank, 2006), the BG is selectively active in
higher-level working memory updating, while lower-level working mem-
ory updating involves mainly cortico-cortical interactions (Nee et al., 2013).
The mechanism we propose differs from others in crediting mPFC with a
functionally important role in training the working memory updating pro-
cess. In our model, mPFC error signals train working memory updates via
backpropagation, a mechanism that is biologically implausible. However,
it is conceivable that a more biologically realistic account of mPFC inter-
actions with working memory updating may be developed. In particular,
activation in mPFC elicited either through electrical (Gariano & Groves,
1988; Taber & Fibiger, 1993) or chemical stimulation (Murase, Grenhoff,
Chouvet, Gonon, & Svensson, 1993) has been observed to drive burst fir-
ing in the ventral tegmental area (VTA), a major source of dopamine (DA)
projections to cortex, while inactivation of mPFC by means of lidocaine
(Murase et al., 1993) reduces burst firing. In previous models (O’Reilly &
Frank, 2006), dopaminergic activity was exploited to allow BG to learn the
value of storing a stimulus in WM. Thus, the current computationally con-
venient but implausible backpropagation method may be replaced by a
more plausible reinforcement learning mechanism (see the supplementary
material). The HER model suggests that mPFC may be a key contributor
to working memory updating, particularly for stimuli that are not innately
valuable.

Additionally, we include a bias parameter in our gating mechanism gov-
erning how likely a currently presented stimulus is to be gated in to WM
versus maintaining the current WM contents. In the HER model, behavior
is observed to degrade when bias values for the top layers of the hierarchy
are higher than they are for the bottom layer; indeed, behavior appears to be
optimal when the bias value is highest at layer 1 of the model and lowest at
layer 3. This finding suggests a correspondence with DA innervation of PFC,
which has been observed to follow an anterior-posterior gradient (Williams
& Goldman-Rakic, 1993), wherein posterior medial and lateral PFC are more
densely innervated relative to more anterior regions. This pattern of inner-
vation may correspond to the hypothesized abstraction gradient posited for
dlPFC, with more anterior regions of dlPFC representing information that is
more abstract compared to posterior regions. DA is known to be modulate
WM updating (Brunel & Wang, 2001; Muly, Szigeti, & Goldman-Rakic, 1998;
Murphy, Arnsten, Goldman-Rakic, & Roth, 1996), and the higher degree of
DA innervation of posterior PFC may support frequent updates of infor-
mation in WM, while the relative sparseness of DA innervation of anterior
PFC may allow information in WM to be maintained over longer durations,
thus allowing the formation of abstract relationships between temporally



Hierarchical Error Representation 2395

distant stimuli. Overall, though, DA levels must be maintained in an opti-
mal range for successful working memory maintenance (Brunel & Wang,
2001; Muly et al., 1998). Dysfunction of the DA system is implicated in a
range of behavioral pathologies, including obsessive-compulsive disorder
and schizophrenia (Abi-Dargham et al., 2002; Cohen & Servan-Schreiber,
1993; Denys, Zohar, & Westenberg, 2003; Goodman et al., 1990).

The HER model suggests a hierarchical organization of mPFC, with
discrete regions predicting outcomes at various levels of abstraction and
signaling discrepancies. Although mPFC, and especially ACC, is often re-
ferred to unitarily, a wealth of evidence suggests that cingulate is segregated
into multiple regions based on functional, connectivity, and meta-analyses
(Jahn et al., 2014; Nee, Kastner, & Brown, 2011). Recent evidence from neu-
roanatomical parcellation (Yu et al., 2011), functional connectivity (Taren
et al., 2011), and neuroimaging studies (Amiez & Petrides, 2014) suggests
that connections between dACC and dlPFC follow a posterior to anterior
pattern, with posterior and anterior regions of ACC connecting to posterior
and anterior regions of dlPFC, respectively. Previous functional imaging
results have suggested a correspondence between medial and lateral PFC
hierarchies, arguing that medial PFC provides motivational signals, while
lateral PFC provides selection, that is, cognitive signals (Kouneiher, Char-
ron, & Koechlin, 2009). Our model differs from this earlier proposal in
that rather than providing motivational signals to lateral PFC, the mPFC
provides prediction error signals that train the lateral PFC regarding what
information must be maintained for successful task performance. While
these views are not directly contradictory, the HER model, like the PRO
model on which it is based, emphasizes predictive processes that are not
explicitly tied to value.

There is some degree of ambiguity regarding the precise nature of the
contents of working memory. The HER model suggests that dlPFC specifi-
cally represents potential errors that are associated with task stimuli. Thus,
although within the model, it is the stimuli themselves that are stored in
WM, the model does not claim that dlPFC represents stimulus identity, but
rather that it stores specifically the information associated with a particular
stimulus that is needed to perform a task. Recent neuroimaging studies
have failed to find stimulus-specific properties represented in dlPFC (Rig-
gall & Postle, 2012), although increased activity was observed in the region
during a delay period during which it is presumably engaging in some
aspect of WM maintenance. Other recent work using MVPA suggests that
information is stored (and decodable) in dlPFC specifically if it is neces-
sary to guide task performance (Nee et al., 2011). This helps to explain
the inconsistency in that sometimes the dlPFC appears to encode stimuli
in working memory (Hussar & Pasternak, 2013; Nee & Brown, 2013) and
sometimes not (Riggall & Postle, 2012). Essentially, dlPFC representations
are prospective in nature, reflecting anticipated task contingencies. Error
representations in the HER model may then be thought of as probabilistic
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if-then rules—biases on responses to be made in the event a particular
stimulus is observed. Thus, single neurons in dlPFC may encode stimuli in
working memory not as sensory information per se, but rather as selected
information that is anticipated to be necessary for guiding task performance
(Rainer, Rao, & Miller, 1999).

Additionally, it is remains ambiguous as to whether activity in dlPFC,
especially in rostral and caudal dlPFC, reflects maintenance of ongoing task
demands or if activity in dlPFC is primarily involved in updating proactive
control plans in response to shifting task contingencies. On one hand, evi-
dence suggests that activity in these regions corresponds to the presentation
of high-level context cues that need to be maintained over extended periods
of time in order to provide information necessary for successful task perfor-
mance (Koechlin et al., 2003). On the other hand, studies that have looked at
the role of caudal and rostral dlPFC during task performance suggest that
transient activity, associated with updating WM and instantiating control
processes which may then be maintained elsewhere, contributes more to
dissociable signals within dlPFC (Reynolds et al., 2012). The HER model
reflects this ambiguity inasmuch as the predictions generated at each layer
of the hierarchy are instantiated and maintained using the same units and
weights. While the model assigns the role of maintaining task-relevant pre-
dictions over extended periods of time to dlPFC, it may be possible that
only transient dlPFC activity is required to instantiate relevant task rules,
which are then maintained by mPFC. Recent evidence suggests distinct
roles of mPFC in signaling prediction error and maintaining task-related
predictions (Jahn et al., 2014).

Although the activity of single neurons involved in WM has been asso-
ciated with coding specific task rules (Asaad, Rainer, & Miller, 2000; Wallis
& Miller, 2003; Yamada, Pita, Iijima, & Tsutsui, 2010), it is not clear that
such coding is devoted to representing unitary rules exclusively. Activity
in dlPFC neurons is quite heterogeneous, and neurons have been reported
whose activity appears to code for various stimulus properties as well as
response plans (Genovesio, Brasted, Mitz, & Wise, 2005; Jun et al., 2010;
Miller, Erickson, & Desimone, 1996). The level of heterogeneity observed
within dlPFC neurons would seem to militate against a simple link between
the instantiation of a rule and a corollary activation of a neuron coding for
that rule. An alternative interpretation offered by the HER model is that
rules are represented in dlPFC through a distributed set of neurons whose
activity corresponds to primitive behavioral elements that constitute a rule.
Such representations occur by virtue of the fact that each working memory
cell encodes the potential for a particular kind of error (i.e., if the appropri-
ate information is not used to guide the action choice), and the errors may
occur in more than one context.

Efferent connections to dlPFC from mPFC are distributed through both
deep and superficial layers of dlPFC (Barbas & Pandya, 1989; Medalla &
Barbas, 2009), indicating that interactions between the two regions may
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support multiple forms of processing, with a slight predominance of net
inhibition from ACC to dlPFC (Medalla & Barbas, 2009). This is generally
consistent with the HER model connections from error signals (presum-
ably from mPFC; see Figure 1) to higher-level outcome signals (presum-
ably in dlPFC). Similarly, prediction signals may be represented in mPFC
and modulate (and train) lower-level working memory representations in
dlPFC. This training function may be separate from a more general in-
hibitory function, by which mPFC may suppress or reset the current task
set (Donoso et al., 2014; Kolling et al., 2012).

There may also be substantial cortico-cortical interactions within dlPFC,
as higher (more anterior) regions provide direct modulation of lower (more
posterior) regions. This is consistent with anatomical studies showing
that more anterior regions originate projections in more superficial lay-
ers, and these terminate in deeper layers of more posterior regions (Barbas
& Rempel-Clower, 1997).

4.3 Relationship to Existing Models. The HER model synthesizes a
number of ideas that have previously appeared in the neuroscientific and
modeling literature. First, hierarchical organization of PFC has been previ-
ously proposed, primarily with regard to dlPFC (Badre & D’Esposito, 2009;
Koechlin et al., 2003; Nee et al., 2013), but additional evidence suggests the
mPFC follows a similar organization (Amiez & Petrides, 2014; Dixon, Fox,
& Christoff, 2014; Taren et al., 2011). Second, the idea of hierarchically or-
ganized regions of the brain learning expected or residual errors of inferior
layers has previously been applied to explaining extraclassical receptive
fields in visual cortex (Rao & Ballard, 1999). Third, the HER model incor-
porates a mechanism that allows for task stimuli to be gated into working
memory, inspired by the function of basal ganglia proposed by O’Reilly
and Frank (2006). Fourth, the concept of expected error as applied in this
model is similar to entropy (or free energy) in information-theoretic ac-
counts of brain function (Friston, 2009, 2010), in that the HER model is
continually learning the environment in such a way as to minimize pre-
diction error. Finally, we incorporate our own previously published model
of mPFC function, which characterizes the role of mPFC as predicting the
likely outcomes of actions and signaling unexpected deviations from pre-
dictions (Alexander & Brown, 2011).

The HER model simulates tasks at the event level, wherein a number of
discrete processing steps intervene between the presentation of a stimulus
and the generation of a response and delivery of feedback to the model.
Processing related to stimulus presentation (i.e., WM updates, prediction
modulation) occurs prior to responses and outcomes, which are treated
as a single conjoined event. The use of response-outcome conjunctions in
the model is derived from their utility in the PRO model in accounting
for a range of results observed in mPFC. However, this does not rule out
the possibility that additional processing steps may intervene between the
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generation of a response and its associated outcome, particularly in tasks
in which a response is not necessarily diagnostic of eventual feedback (e.g.,
probabilistic tasks in which the outcome of a choice is not known until feed-
back versus typical cognitive control tasks in which success or failure can be
assessed based only on the identity of the response). More generally, stimuli,
responses, and outcomes may be more broadly construed as generic events:
salient stimuli (whether exogenous or endogenous) that could conceivably
form the basis for additional processing (Alexander & Brown, 2014). As
such, the grouping of responses and outcomes used in the HER model was
chosen based on the types of tasks the model was expected to simulate
and does not rule out the possibility that mPFC and dlPFC may also use
alternative associative pairings (e.g., stimulus-response, stimulus-outcome,
response-outcome).

The HER model provides a novel, general solution to the problem of
how hierarchical task stimuli may be functionally self-organized into cor-
responding hierarchical task representations. One reason for the tidiness
of the HER model’s learned associations may be that it is the only way
for task performance to be optimal given the smallest possible number of
layers. For each level of the task hierarchy, exactly one cue will be valid. In
the 12-AX task for example, either the 1 or the 2 cue is valid at any given
time. Conveniently, only one learned cue representation will be stored at
each layer at a given time. This means that storage is most efficient if each
level of the task hierarchy has its own corresponding model layer. If instead
the 1 were stored in one layer and the 2 were stored in another, then it
would not be possible to store every combination 1A, 1B, 2A, and 2B across
only two layers. The HER model will not settle on such a solution as it
entails greater prediction errors. Overall, this insight captures the essence
of a stimulus dimension: that instances of properties on a given dimension
are mutually exclusive. In the example here, 1 versus 2 collectively form a
feature dimension. By implication, feature dimensions may be abducted in
general by grouping feature instances that never co-occur. This approach
to abductive inference about feature dimensions may be more general than
earlier proposals that allow feature dimensions to be abducted only when
the same feature is presented repeatedly over a long series of trials (Rougier,
Noelle, Braver, Cohen, & O’Reilly, 2005).

In our previous work, we suggested that multidimensional error signals
generated by mPFC provide a plausible learning signal that may be used by
a model-based RL algorithm, while other studies have associated activity
in dlPFC with such a signal (Barto et al., 1995; Gläscher et al., 2010; Sutton,
1990). The HER model, based on the PRO model of mPFC, suggests that
signals in dlPFC corresponding to a model-based learning signal may be
driven in part by mPFC. To the extent that the HER model uses reinforce-
ment learning formulations to learn tasks that require the maintenance of an
environmental model in order to complete, it may be considered a model-
based RL algorithm. However, while typical model-based RL algorithms



Hierarchical Error Representation 2399

often render models of the environment as a state-transition matrix enu-
merating the probabilities of transition between all states (Gläscher et al.,
2010; Jong & Stone, 2008), no one component of the HER model corresponds
with such a unitary model. Rather, the model of the environment learned
by the HER model is distributed across hierarchical layers, each of which
relies on relatively simple model-free RL formulations. Model-based be-
havior exhibited by the HER model then emerges from the interaction of
multiple model-free RL learners.

To the extent that the HER model follows a hierarchical organization,
it may also be considered a hierarchical RL (HRL) algorithm. In general,
HRL models attempt to learn to accomplish tasks composed of abstract
goals, rules, and concrete elementary behaviors organized into behavioral
schemata (Barto & Mahadevan, 2003; Botvinick, 2008; Botvinick, Niv, &
Barto, 2009; Jong & Stone, 2008). For example, the abstract goal of “making a
cup of coffee” may include rules such as grinding beans, heating water, and
so on, and the rules themselves may be composed of behavioral primitives
such as “opening” or “filling” (Cooper & Shallice, 2000). While organizing
these elements into a coherent goal-based behavior is a significant challenge,
typical HRL models take the existence of such elements as given. In contrast,
the HER model assembles the schemata needed to accomplish an abstract
task starting from concrete responses and learning more abstract “rules” in
progressive stages.

Recent theoretical work has also proposed an interaction of ACC and
dlPFC in the context of hierarchical behavior (Holroyd & Yeung, 2012). In
this work, ACC is thought to constitute the highest layer of a hierarchy
and is involved in maintaining goals and policies necessary for realizing
these goals, while lower layers represent task sets (dlPFC), subgoals (OFC),
action primitives (dorsal striatum), and value (ventral striatum) required
to implement such policies and evaluate success or failure. In this scheme,
ACC constitutes the top level of a hierarchy, and thus is substantially dif-
ferent from the HER model in that the HER model proposes that distinct
regions of dlPFC and mPFC are involved at all layers of a hierarchy.

In the HER model, hierarchical layers learn successively more abstract
error predictions wherein the prediction to be learned at particular layer in
the hierarchy is the error term of the immediately inferior layer, provided
that the error can reliably be associated with the prior presentation of a
stimulus. Previous work has implicated mPFC, as well as neuromodulatory
systems innervated by mPFC, especially locus coeruleus (Aston-Jones &
Cohen, 2005), in the processing of unexpected errors, as opposed to expected
errors, related to shifts in environmental contingencies (Behrens et al., 2007;
Holroyd et al., 2004; Yu & Dayan, 2005). Error-related signals in the HER
model, associated with mPFC activity, are modulated by error predictions at
superior hierarchical layers: when an error occurring at a lower layer can be
predicted, error signals for that layer decrease, while errors that cannot be
predicted continue to produce robust signals. By indirectly decreasing the
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effective learning rate of the model (through modulation of predictions and,
consequently, error signals needed to drive learning) in conditions when
errors are predictable, the HER model suggests that dlPFC may play a role
in resolving the stability-plasticity dilemma (Grossberg, 1980) by decreasing
the effect of errors in predictable, though error-prone, environments, while
permitting rapid learning in response to unexpected errors.

Error signals in the HER model are calculated at each hierarchical layer,
suggesting that, corresponding to the hierarchical organization of mPFC,
distinct subregions of mPFC, and particularly ACC, may produce error-
related activity related to more or less abstract errors (e.g., response errors,
rule errors). Previous models of PFC have also posited error signals and
updating at multiple levels of abstraction (Collins & Frank, 2013; Collins
& Koechlin, 2012), and fMRI studies have observed distinct regions within
cingulate that appear to signal error related to the degree of abstraction
(Donoso et al., 2014; Zarr & Brown, 2015). The HER model differs from
these previous models in that the same mechanism is used to compute
error, and drive learning, at each level of abstraction, while the PROBE
(Collins & Koechlin, 2012) and C-TS model (Collins & Frank, 2013) use
RL formulations for learning concrete actions in conjunction with Bayesian
approaches for updating beliefs about task sets.

4.4 Limitations. Although the HER model was developed in order to
investigate the function of dlPFC and its interaction with ACC, a number
of assumptions are incorporated into the model that may limit the scope of
its utility in this regard.

In the HER model, prediction units at each layer reflect a combinato-
rial enumeration of all possible sequences that may be observed in inferior
layers. At the lowest layer, all possible conjunctions of responses and out-
comes are represented by prediction units, and are associated with task-
related stimuli, while at the next higher layer, prediction units represent
all possible stimulus-response-outcome conjunctions, and so on, resulting
in a geometric growth of the dimensionality of the network with each ad-
ditional layer. In terms of neural plausibility, this representation scheme
is clearly deficient. If such a scheme were employed by a behaving ani-
mal, it would require the existence of specialized neurons coding a specific
sequence of events that may never be observed, as well as an absolutely
enormous rostral dlPFC. However, we note that this problem is not unique
to the HER model; practically all models of working memory include hard-
wired representations in some form, as well as a degree of specificity in
the representational scheme, for the sake of simplicity. In practice, there is
likely to be a sparse and adaptive coding such that stimuli that are experi-
enced more frequently will be represented by more neurons (Clark, Allard,
Jenkins, & Merzenich, 1988). Generally it is assumed that such represen-
tations reflect the dynamic mapping of an external stimulus to neurons
involved in WM; that is, simply because the activity of a unit within a
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computational model reflects the presence or absence of an item in WM,
it is not presumed that the such a unit corresponds with a real neuron
that represents only a very specific type of stimulus. Rather, the unit in the
model is a proxy for a real neuron that in the context of a specific task,
happens to code for a specific stimulus. Similarly, the problem of repre-
senting multiple high-dimensional stimulus-outcome conjunctions may be
solved by such dynamically remapped neurons rather than the allocation
of additional cortical real estate to such representations.

The HER model as simulated may be unable to generalize rules across
tasks. Because of the specificity of representation at each hierarchical layer,
the HER model is unable to generalize associations learned in one context
to a novel one. For example, if the identity of stimuli in the 1-2AX task were
altered, an instance of the HER model that had learned the task with the
original stimulus set would have to relearn the task ab initio, even though
the task structure remains the same. Nevertheless, this limitation may be
overcome if the stimulus representations respond to more general categories
of stimuli rather than specific stimulus instances.

In much the same way, it may not be required that a subject have ex-
tensive experience with a task in order to acquire error representations
appropriate to that task. In previous work (Alexander & Brown, 2011), we
described the role of mPFC as learning to predict the outcomes of actions,
or, more generally, generic events (Alexander & Brown, 2014), and signaling
deviations from predicted outcomes. In the model we present in this letter,
we specifically focus on the role of mPFC in error signaling as a mechanism
to train representations in dlPFC. However, once such representations are
formed, prediction-related activity in mPFC may be sufficient to elicit asso-
ciated activity in dlPFC that may then be dynamically mapped to external
stimuli. Conceptually, this is consistent with models of cognitive control in
which mPFC is thought to signal the need for control, which is then imple-
mented by dlPFC (e.g., the conflict model (Botvinick et al., 2001; Yeung et al.,
2004). However, the error representation hypothesis suggests that the signal
generated by mPFC, rather than reflecting a nonspecific need for increased
control, may in fact contain detailed information regarding how top-down
control of behavior should be implemented (i.e., specific predictions about
likely outcomes given a particular stimulus history).

The HER model incorporates a gating mechanism used to determine
whether a task stimulus should be gated into WM. The gating mechanism
was inspired by previous computational models of WM in which biolog-
ically detailed models of basal ganglia were used to learn the value of
storing stimuli in working memory. As our goal in developing the HER
model was not to investigate the function of basal ganglia, we opted to
use the less biologically plausible mechanism of backpropagation to train
the gating mechanism in the HER model. While ACC is known to interact
with basal ganglia, it is unlikely that the detailed information carried by
the error signal in the HER model is used to train a gating mechanism as
implemented in real brains. Rather, it is more likely that such training



2402 W. Alexander and J. Brown

involves a scalar signal, typically associated with dopaminergic activity
(Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 1997).
While there is evidence that activity in ACC is able to drive dopaminergic
activity, it is unclear if this interaction is necessary or sufficient to train a
WM gate. Although the specific role assigned to ACC by the HER model re-
mains open to question, additional simulations of the HER model in which
the WM gating mechanism is trained by a scalar error signal derived from
RL demonstrate the model’s ability to solve the 1-2AX task even without
the benefit of error backpropagation (see the supplementary material).

Throughout this letter, we refer to WM primarily in the context of main-
tenance of stimuli associated with information needed to successfully per-
form a task (i.e., task-related WM). This type of WM may be distinct from
other forms of memory involved in, for example, maintaining sensory in-
formation over extended periods of time (Braver et al., 2001; D’Esposito,
Postle, Ballard, & Lease, 1999; Riggall & Postle, 2012). This means that the
HER model’s WM capacity of three should not be understood as an absolute
limit on WM capacity. Instead, WM includes both the task WM of the HER
model specifically and also other kinds of sensory WM. The HER model
may be considered to have a rudimentary form of sensory information in
the form of eligibility traces (see equation 2.6) that maintain temporally ex-
tended representations of recently observed stimuli, allowing the model to
learn relationships between temporally distant events. Under this interpre-
tation, the WM mechanism in the HER model, which allows for only a single
item to be stored per hierarchical level, may be thought of as an attentional
spotlight (Awh & Jonides, 2001; Cowan, 1988; Garavan, 1998) that allows
additional processing of individual cues at the expense of others. However,
while it is presumably the case that items encoded in a sensory memory
store could be attended to in a dynamic, flexible manner, in the HER model,
items are eligible to be stored in WM only at the time they are presented.
One possible extension to the model, then, would be to more fully account
for the interaction of sensory and task-related working memory (e.g., in the
form of a visuospatial sketchpad or phonological loop; Baddeley & Hitch,
1974).

The types of tasks the HER model was developed to perform generally
involve integrating structured information presented previously in order
to generate an appropriate response in a current state. This type of task
is fundamentally different from other sorts of tasks thought to involve
dlPFC in which a behaving agent is required to generate responses that
will lead from a beginning state to a desired end state (i.e., goal-directed
behavior). In its present form, the HER model is unable to perform such
tasks and therefore is an incomplete account of dlPFC function. It remains
an open question as to whether the basic structure of the model is capable
of supporting goal-directed behaviors, and to the extent that it could in
principle do so, it will likely require augmentation reflecting the function of
additional brain regions also known to be involved in goal representation,
such as OFC or vmPFC (O’Doherty, 2011).
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5 Conclusion

Despite these potential limitations, the HER model provides a promising
theoretical framework for interpreting the function and interaction of dlPFC
and mPFC, as well as their contribution to behavior. One goal of compu-
tational neural modeling is to show how sophisticated cognitive processes
can be supported given constraints imposed by the structure and func-
tion of the brain. With the exception of the backpropagated error term in
equation 2.6 (but see the supplementary material), the computations and
architecture of the HER model are relatively straightforward; nevertheless,
the model is capable of autonomously learning complex, structured tasks.
In doing so, the model displays emergent effects that result from the interac-
tion of the model with a task. These effects include autonomous behavioral
shaping in which the model learns concrete stimulus-response mappings
prior to higher-level contingencies, category formation, and the mapping of
external stimuli to hierarchical layers of the model. These effects were not
hardwired into the model and provide a plausible account of how humans
may learn such tasks.

A second goal of computational neural modeling is to provide evidence
not only that a particular mechanism is plausible given neurobiological
constraints, but also that such a mechanism can account for existing data
and provide predictions regarding future observations. In this letter, we
have focused on describing the function of the HER model without regard
for how well it may (or may not) satisfy this goal. Future work with the
HER model will aim to demonstrate the ability of the model to account
for a range of data from fMRI, EEG, single-unit neurophysiological, lesion,
and behavioral studies involving dlPFC. More generally, the HER model,
and the error representation hypothesis outlined in section 1, suggests how
rules and task sets may be represented in dlPFC. Specifically, the activity
of a single prediction unit in the model reflects a prediction of future error
signals, with rules being represented in a distributed fashion over several
units, each of which signifies some component of that rule. Additional work
is needed to identify whether such a representation scheme is implemented
in lateral PFC or whether individual “rule neurons” exist for a given task.
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